Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (225)
  • Open Access

    ARTICLE

    Comprehensive Analysis of Gender Classification Accuracy across Varied Geographic Regions through the Application of Deep Learning Algorithms to Speech Signals

    Abhishek Singhal*, Devendra Kumar Sharma

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 609-625, 2024, DOI:10.32604/csse.2023.046730

    Abstract This article presents an exhaustive comparative investigation into the accuracy of gender identification across diverse geographical regions, employing a deep learning classification algorithm for speech signal analysis. In this study, speech samples are categorized for both training and testing purposes based on their geographical origin. Category 1 comprises speech samples from speakers outside of India, whereas Category 2 comprises live-recorded speech samples from Indian speakers. Testing speech samples are likewise classified into four distinct sets, taking into consideration both geographical origin and the language spoken by the speakers. Significantly, the results indicate a noticeable difference… More >

  • Open Access

    ARTICLE

    Research on Total Electric Field Prediction Method of Ultra-High Voltage Direct Current Transmission Line Based on Stacking Algorithm

    Yinkong Wei1,2, Mucong Wu1,2,*, Wei Wei3, Paulo R. F. Rocha4, Ziyi Cheng1,2, Weifang Yao5

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 723-738, 2024, DOI:10.32604/csse.2023.036062

    Abstract Ultra-high voltage (UHV) transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment. The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid. Yet, the accurate prediction of the ground total electric field remains a technical challenge. In this work, we collected the total electric field data from the Ningdong-Zhejiang ±800 kV UHVDC transmission project, as of the Ling Shao line, and perform an outlier analysis of the More >

  • Open Access

    ARTICLE

    A Hybrid Manufacturing Process Monitoring Method Using Stacked Gated Recurrent Unit and Random Forest

    Chao-Lung Yang1,*, Atinkut Atinafu Yilma1,2, Bereket Haile Woldegiorgis2, Hendrik Tampubolon3,4, Hendri Sutrisno5

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 233-254, 2024, DOI:10.32604/iasc.2024.043091

    Abstract This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations. Since real-time production process monitoring is critical in today’s smart manufacturing. The more robust the monitoring model, the more reliable a process is to be under control. In the past, many researchers have developed real-time monitoring methods to detect process shifts early. However, these methods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties. In this paper, a robust monitoring model combining Gated Recurrent Unit (GRU) and Random… More >

  • Open Access

    ARTICLE

    Malware Attacks Detection in IoT Using Recurrent Neural Network (RNN)

    Abeer Abdullah Alsadhan1, Abdullah A. Al-Atawi2, Hanen karamti3, Abid Jameel4, Islam Zada5, Tan N. Nguyen6,*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 135-155, 2024, DOI:10.32604/iasc.2023.041130

    Abstract IoT (Internet of Things) devices are being used more and more in a variety of businesses and for a variety of tasks, such as environmental data collection in both civilian and military situations. They are a desirable attack target for malware intended to infect specific IoT devices due to their growing use in a variety of applications and their increasing computational and processing power. In this study, we investigate the possibility of detecting IoT malware using recurrent neural networks (RNNs). RNN is used in the proposed method to investigate the execution operation codes of ARM-based More >

  • Open Access

    ARTICLE

    Deep-Ensemble Learning Method for Solar Resource Assessment of Complex Terrain Landscapes

    Lifeng Li1, Zaimin Yang1, Xiongping Yang1, Jiaming Li2, Qianyufan Zhou3,*, Ping Yang3

    Energy Engineering, Vol.121, No.5, pp. 1329-1346, 2024, DOI:10.32604/ee.2023.046447

    Abstract As the global demand for renewable energy grows, solar energy is gaining attention as a clean, sustainable energy source. Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic power plants. This study proposes an integrated deep learning-based photovoltaic resource assessment method. Ensemble learning and deep learning methods are fused for photovoltaic resource assessment for the first time. The proposed method combines the random forest, gated recurrent unit, and long short-term memory to effectively improve the accuracy and reliability of photovoltaic resource assessment. The proposed method has strong adaptability and More >

  • Open Access

    ARTICLE

    The Effects of the Geometry of a Current Collector with an Equal Open Ratio on Output Power of a Direct Methanol Fuel Cell

    Yingli Zhu1,*, Jiachi Xie1, Mingwei Zhu1, Jun Zhang2, Miaomiao Li3

    Energy Engineering, Vol.121, No.5, pp. 1161-1172, 2024, DOI:10.32604/ee.2024.041205

    Abstract The open ratio of a current collector has a great impact on direct methanol fuel cell (DMFC) performance. Although a number of studies have investigated the influence of the open ratio of DMFC current collectors, far too little attention has been given to how geometry (including the shape and feature size of the flow field) affects a current collector with an equal open ratio. In this paper, perforated and parallel current collectors with an equal open ratio of 50% and different feature sizes are designed, and the corresponding experimental results are shown to explain the… More >

  • Open Access

    ARTICLE

    Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning

    Aizaz Ali1, Maqbool Khan1,2, Khalil Khan3, Rehan Ullah Khan4, Abdulrahman Aloraini4,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 713-733, 2024, DOI:10.32604/cmc.2024.048712

    Abstract Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understanding public opinion and user sentiment across diverse languages. While numerous scholars conduct sentiment analysis in widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grappling with resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language, characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu, Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguistic features,… More >

  • Open Access

    ARTICLE

    Mathematical Modelling and Simulations of Active Direct Methanol Fuel Cell

    RABIRANJAN MURMUa,b, DEBASHIS ROYa, HAREKRUSHNA SUTARb

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 125-139, 2023, DOI:10.32381/JPM.2023.40.3-4.1

    Abstract A one dimensional isothermal model is proposed by modelling the kinetics of methanol transport at anode flow channel (AFC), membrane and cathode catalyst layer of direct methanol fuel cell (DMFC). Analytical model is proposed to predict methanol cross-over rate through the electrolyte membrane and cell performance. The model presented in this paper considered methanol diffusion and electrochemical oxidation at the anode and cathode channels. The analytical solution of the proposed model was simulated in a MATLAB environment to obtain the polarization curve and leakage current. The effect of methanol concentration on cell voltage and leakage More >

  • Open Access

    ARTICLE

    BSTFNet: An Encrypted Malicious Traffic Classification Method Integrating Global Semantic and Spatiotemporal Features

    Hong Huang1, Xingxing Zhang1,*, Ye Lu1, Ze Li1, Shaohua Zhou2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3929-3951, 2024, DOI:10.32604/cmc.2024.047918

    Abstract While encryption technology safeguards the security of network communications, malicious traffic also uses encryption protocols to obscure its malicious behavior. To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic, we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features, called BERT-based Spatio-Temporal Features Network (BSTFNet). At the packet-level granularity, the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers (BERT)… More >

  • Open Access

    ARTICLE

    Secrecy Outage Probability Minimization in Wireless-Powered Communications Using an Improved Biogeography-Based Optimization-Inspired Recurrent Neural Network

    Mohammad Mehdi Sharifi Nevisi1, Elnaz Bashir2, Diego Martín3,*, Seyedkian Rezvanjou4, Farzaneh Shoushtari5, Ehsan Ghafourian2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3971-3991, 2024, DOI:10.32604/cmc.2024.047875

    Abstract This paper focuses on wireless-powered communication systems, which are increasingly relevant in the Internet of Things (IoT) due to their ability to extend the operational lifetime of devices with limited energy. The main contribution of the paper is a novel approach to minimize the secrecy outage probability (SOP) in these systems. Minimizing SOP is crucial for maintaining the confidentiality and integrity of data, especially in situations where the transmission of sensitive data is critical. Our proposed method harnesses the power of an improved biogeography-based optimization (IBBO) to effectively train a recurrent neural network (RNN). The… More >

Displaying 1-10 on page 1 of 225. Per Page