Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access


    Performance Evaluation and Effectiveness of the Reverberation Room

    Mohamed Abd-Elbasseer*, Hatem Kh Mohamed

    Sound & Vibration, Vol.55, No.1, pp. 43-55, 2021, DOI:10.32604/sv.2021.09417

    Abstract This research presents a thorough evaluation of the reverberation room at Acoustics Laboratory in National Institute of Standards (NIS) according to the related international standards. The evaluation aims at examining the room performance and exploring its effectiveness in the frequency range from 125 Hz to 10000 Hz according to the international standard requirements. The room, which was designed and built several years ago, is an irregular rectangular shape free from diffusers. Its volume is about 158.84 m3, which meets the requirement of the ISO 354 standard Lmax < 1.9V1/3. Cut-off frequencies of one and one-third octave are… More >

  • Open Access


    Frequency Domain Based Solution for Certain Class of Wave Equations: An exhaustive study of Numerical Solutions

    Vinita Chellappan1, S. Gopalakrishnan1 and V. Mani1

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.2, pp. 131-174, 2014, DOI:10.3970/cmes.2014.097.131

    Abstract The paper discusses the frequency domain based solution for a certain class of wave equations such as: a second order partial differential equation in one variable with constant and varying coefficients (Cantilever beam) and a coupled second order partial differential equation in two variables with constant and varying coefficients (Timoshenko beam). The exact solution of the Cantilever beam with uniform and varying cross-section and the Timoshenko beam with uniform cross-section is available. However, the exact solution for Timoshenko beam with varying cross-section is not available. Laplace spectral methods are used to solve these problems exactly… More >

  • Open Access


    An Improved Unsplit and Convolutional Perfectly Matched Layer Absorbing Technique for the Navier-Stokes Equations Using Cut-Off Frequency Shift

    Roland Martin1, Carlos Couder-Castaneda1

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.1, pp. 47-78, 2010, DOI:10.3970/cmes.2010.063.047

    Abstract We develop an unsplit convolutional perfectly matched layer (CPML) technique to absorb efficiently compressible viscous flows and their related supersonic or subsonic regimes at the outer boundary of a distorted computational domain. More particularly subsonic outgoing flows or subsonic wall-boundary layers close to the PML are well absorbed, which is difficult to obtain without creating numerical instabilities over long time periods. This new PML (CPML) introduces the calculation of auxiliary memory variables at each time step and allows an unsplit formulation of the PML. Damping functions involving a high shift in the frequency domain allow… More >

Displaying 1-10 on page 1 of 3. Per Page