Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (215)
  • Open Access

    ARTICLE

    Layered Feature Engineering for E-Commerce Purchase Prediction: A Hierarchical Evaluation on Taobao User Behavior Datasets

    Liqiu Suo1, Lin Xia1, Yoona Chung1, Eunchan Kim1,2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.076329 - 10 February 2026

    Abstract Accurate purchase prediction in e-commerce critically depends on the quality of behavioral features. This paper proposes a layered and interpretable feature engineering framework that organizes user signals into three layers: Basic, Conversion & Stability (efficiency and volatility across actions), and Advanced Interactions & Activity (cross-behavior synergies and intensity). Using real Taobao (Alibaba’s primary e-commerce platform) logs (57,976 records for 10,203 users; 25 November–03 December 2017), we conducted a hierarchical, layer-wise evaluation that holds data splits and hyperparameters fixed while varying only the feature set to quantify each layer’s marginal contribution. Across logistic regression (LR), decision… More >

  • Open Access

    ARTICLE

    An Intelligent Multi-Stage GA–SVM Hybrid Optimization Framework for Feature Engineering and Intrusion Detection in Internet of Things Networks

    Isam Bahaa Aldallal1, Abdullahi Abdu Ibrahim1,*, Saadaldeen Rashid Ahmed2,3

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075212 - 10 February 2026

    Abstract The rapid growth of IoT networks necessitates efficient Intrusion Detection Systems (IDS) capable of addressing dynamic security threats under constrained resource environments. This paper proposes a hybrid IDS for IoT networks, integrating Support Vector Machine (SVM) and Genetic Algorithm (GA) for feature selection and parameter optimization. The GA reduces the feature set from 41 to 7, achieving a 30% reduction in overhead while maintaining an attack detection rate of 98.79%. Evaluated on the NSL-KDD dataset, the system demonstrates an accuracy of 97.36%, a recall of 98.42%, and an F1-score of 96.67%, with a low false More >

  • Open Access

    ARTICLE

    HMA-DER: A Hierarchical Attention and Expert Routing Framework for Accurate Gastrointestinal Disease Diagnosis

    Sara Tehsin1, Inzamam Mashood Nasir1,*, Wiem Abdelbaki2, Fadwa Alrowais3, Khalid A. Alattas4, Sultan Almutairi5, Radwa Marzouk6

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074416 - 10 February 2026

    Abstract Objective: Deep learning is employed increasingly in Gastroenterology (GI) endoscopy computer-aided diagnostics for polyp segmentation and multi-class disease detection. In the real world, implementation requires high accuracy, therapeutically relevant explanations, strong calibration, domain generalization, and efficiency. Current Convolutional Neural Network (CNN) and transformer models compromise border precision and global context, generate attention maps that fail to align with expert reasoning, deteriorate during cross-center changes, and exhibit inadequate calibration, hence diminishing clinical trust. Methods: HMA-DER is a hierarchical multi-attention architecture that uses dilation-enhanced residual blocks and an explainability-aware Cognitive Alignment Score (CAS) regularizer to directly align… More >

  • Open Access

    ARTICLE

    Engine Failure Prediction on Large-Scale CMAPSS Data Using Hybrid Feature Selection and Imbalance-Aware Learning

    Ahmad Junaid1, Abid Iqbal2,*, Abuzar Khan1, Ghassan Husnain1,*, Abdul-Rahim Ahmad3, Mohammed Al-Naeem4

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073189 - 10 February 2026

    Abstract Most predictive maintenance studies have emphasized accuracy but provide very little focus on Interpretability or deployment readiness. This study improves on prior methods by developing a small yet robust system that can predict when turbofan engines will fail. It uses the NASA CMAPSS dataset, which has over 200,000 engine cycles from 260 engines. The process begins with systematic preprocessing, which includes imputation, outlier removal, scaling, and labelling of the remaining useful life. Dimensionality is reduced using a hybrid selection method that combines variance filtering, recursive elimination, and gradient-boosted importance scores, yielding a stable set of… More >

  • Open Access

    ARTICLE

    Structure-Based Virtual Sample Generation Using Average-Linkage Clustering for Small Dataset Problems

    Chih-Chieh Chang*, Khairul Izyan Bin Anuar, Yu-Hwa Liu

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073177 - 10 February 2026

    Abstract Small datasets are often challenging due to their limited sample size. This research introduces a novel solution to these problems: average linkage virtual sample generation (ALVSG). ALVSG leverages the underlying data structure to create virtual samples, which can be used to augment the original dataset. The ALVSG process consists of two steps. First, an average-linkage clustering technique is applied to the dataset to create a dendrogram. The dendrogram represents the hierarchical structure of the dataset, with each merging operation regarded as a linkage. Next, the linkages are combined into an average-based dataset, which serves as… More >

  • Open Access

    ARTICLE

    Historical Transportation GIS (1880–2020) for Decision Making in Sustainable Development Goals

    Bárbara Polo-Martín*

    Revue Internationale de Géomatique, Vol.35, pp. 53-78, 2026, DOI:10.32604/rig.2026.071069 - 05 February 2026

    Abstract The expansion of transportation networks, including railways and ports, has been a major force driving urban growth, mobility, and socio-economic transformations since the Industrial Revolution. This study utilizes Historical Geographic Information Systems to examine the global evolution of transportation infrastructure, focusing on railways and ports, from 1880 to 2020. The dataset enables a multidimensional analysis of how transportation systems have shaped cities, influenced regional development, and helped to make possible sustainability efforts. By offering insights into transport accessibility, land-use changes, and economic connectivity, the study provides a robust empirical foundation for understanding long-term infrastructure dynamics. More >

  • Open Access

    ARTICLE

    A Comparative Benchmark of Deep Learning Architectures for AI-Assisted Breast Cancer Detection in Mammography Using the MammosighTR Dataset: A Nationwide Turkish Screening Study (2016–2022)

    Nuh Azginoglu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075834 - 29 January 2026

    Abstract Breast cancer screening programs rely heavily on mammography for early detection; however, diagnostic performance is strongly affected by inter-reader variability, breast density, and the limitations of conventional computer-aided detection systems. Recent advances in deep learning have enabled more robust and scalable solutions for large-scale screening, yet a systematic comparison of modern object detection architectures on nationally representative datasets remains limited. This study presents a comprehensive quantitative comparison of prominent deep learning–based object detection architectures for Artificial Intelligence-assisted mammography analysis using the MammosighTR dataset, developed within the Turkish National Breast Cancer Screening Program. The dataset comprises… More >

  • Open Access

    ARTICLE

    A Novel Unified Framework for Automated Generation and Multimodal Validation of UML Diagrams

    Van-Viet Nguyen1, Huu-Khanh Nguyen2, Kim-Son Nguyen1, Thi Minh-Hue Luong1, Duc-Quang Vu1, Trung-Nghia Phung3, The-Vinh Nguyen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075442 - 29 January 2026

    Abstract It remains difficult to automate the creation and validation of Unified Modeling Language (UML) diagrams due to unstructured requirements, limited automated pipelines, and the lack of reliable evaluation methods. This study introduces a cohesive architecture that amalgamates requirement development, UML synthesis, and multimodal validation. First, LLaMA-3.2-1B-Instruct was utilized to generate user-focused requirements. Then, DeepSeek-R1-Distill-Qwen-32B applies its reasoning skills to transform these requirements into PlantUML code. Using this dual-LLM pipeline, we constructed a synthetic dataset of 11,997 UML diagrams spanning six major diagram families. Rendering analysis showed that 89.5% of the generated diagrams compile correctly, while… More >

  • Open Access

    ARTICLE

    Two-Stage LightGBM Framework for Cost-Sensitive Prediction of Impending Failures of Component X in Scania Trucks

    Si-Woo Kim, Yong Soo Kim*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073492 - 12 January 2026

    Abstract Predictive maintenance (PdM) is vital for ensuring the reliability, safety, and cost efficiency of heavy-duty vehicle fleets. However, real-world sensor data are often highly imbalanced, noisy, and temporally irregular, posing significant challenges to model robustness and deployment. Using multivariate time-series data from Scania trucks, this study proposes a novel PdM framework that integrates efficient feature summarization with cost-sensitive hierarchical classification. First, the proposed last_k_summary method transforms recent operational records into compact statistical and trend-based descriptors while preserving missingness, allowing LightGBM to leverage its inherent split rules without ad-hoc imputation. Then, a two-stage LightGBM framework is developed… More >

  • Open Access

    ARTICLE

    Lightweight Airborne Vision Abnormal Behavior Detection Algorithm Based on Dual-Path Feature Optimization

    Baixuan Han1, Yueping Peng1,*, Zecong Ye2, Hexiang Hao1, Xuekai Zhang1, Wei Tang1, Wenchao Kang1, Qilong Li1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.071071 - 09 December 2025

    Abstract Aiming at the problem of imbalance between detection accuracy and algorithm model lightweight in UAV aerial image target detection algorithm, a lightweight multi-category abnormal behavior detection algorithm based on improved YOLOv11n is designed. By integrating multi-head grouped self-attention mechanism and Partial-Conv, a two-way feature grouping fusion module (DFPF) was designed, which carried out effective channel segmentation and fusion strategies to reduce redundant calculations and memory access. C3K2 module was improved, and then unstructured pruning and feature distillation technology were used. The algorithm model is lightweight, and the feature extraction ability for airborne visual abnormal behavior… More >

Displaying 1-10 on page 1 of 215. Per Page