Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (142)
  • Open Access

    ARTICLE

    Empirical Analysis of Neural Networks-Based Models for Phishing Website Classification Using Diverse Datasets

    Shoaib Khan, Bilal Khan, Saifullah Jan*, Subhan Ullah, Aiman

    Journal of Cyber Security, Vol.5, pp. 47-66, 2023, DOI:10.32604/jcs.2023.045579

    Abstract Phishing attacks pose a significant security threat by masquerading as trustworthy entities to steal sensitive information, a problem that persists despite user awareness. This study addresses the pressing issue of phishing attacks on websites and assesses the performance of three prominent Machine Learning (ML) models—Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM)—utilizing authentic datasets sourced from Kaggle and Mendeley repositories. Extensive experimentation and analysis reveal that the CNN model achieves a better accuracy of 98%. On the other hand, LSTM shows the lowest accuracy of 96%. These findings underscore the More >

  • Open Access

    ARTICLE

    Terrorism Attack Classification Using Machine Learning: The Effectiveness of Using Textual Features Extracted from GTD Dataset

    Mohammed Abdalsalam1,*, Chunlin Li1, Abdelghani Dahou2, Natalia Kryvinska3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1427-1467, 2024, DOI:10.32604/cmes.2023.029911

    Abstract One of the biggest dangers to society today is terrorism, where attacks have become one of the most significant risks to international peace and national security. Big data, information analysis, and artificial intelligence (AI) have become the basis for making strategic decisions in many sensitive areas, such as fraud detection, risk management, medical diagnosis, and counter-terrorism. However, there is still a need to assess how terrorist attacks are related, initiated, and detected. For this purpose, we propose a novel framework for classifying and predicting terrorist attacks. The proposed framework posits that neglected text attributes included… More >

  • Open Access

    ARTICLE

    Action Recognition for Multiview Skeleton 3D Data Using NTURGB + D Dataset

    Rosepreet Kaur Bhogal1,*, V. Devendran2

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2759-2772, 2023, DOI:10.32604/csse.2023.034862

    Abstract Human activity recognition is a recent area of research for researchers. Activity recognition has many applications in smart homes to observe and track toddlers or oldsters for their safety, monitor indoor and outdoor activities, develop Tele immersion systems, or detect abnormal activity recognition. Three dimensions (3D) skeleton data is robust and somehow view-invariant. Due to this, it is one of the popular choices for human action recognition. This paper proposed using a transversal tree from 3D skeleton data to represent videos in a sequence. Further proposed two neural networks: convolutional neural network recurrent neural network_1… More >

  • Open Access

    REVIEW

    Action Recognition and Detection Based on Deep Learning: A Comprehensive Summary

    Yong Li1,4, Qiming Liang2,*, Bo Gan3, Xiaolong Cui4

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1-23, 2023, DOI:10.32604/cmc.2023.042494

    Abstract Action recognition and detection is an important research topic in computer vision, which can be divided into action recognition and action detection. At present, the distinction between action recognition and action detection is not clear, and the relevant reviews are not comprehensive. Thus, this paper summarized the action recognition and detection methods and datasets based on deep learning to accurately present the research status in this field. Firstly, according to the way that temporal and spatial features are extracted from the model, the commonly used models of action recognition are divided into the two stream… More >

  • Open Access

    ARTICLE

    Using Speaker-Specific Emotion Representations in Wav2vec 2.0-Based Modules for Speech Emotion Recognition

    Somin Park1, Mpabulungi Mark1, Bogyung Park2, Hyunki Hong1,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1009-1030, 2023, DOI:10.32604/cmc.2023.041332

    Abstract Speech emotion recognition is essential for frictionless human-machine interaction, where machines respond to human instructions with context-aware actions. The properties of individuals’ voices vary with culture, language, gender, and personality. These variations in speaker-specific properties may hamper the performance of standard representations in downstream tasks such as speech emotion recognition (SER). This study demonstrates the significance of speaker-specific speech characteristics and how considering them can be leveraged to improve the performance of SER models. In the proposed approach, two wav2vec-based modules (a speaker-identification network and an emotion classification network) are trained with the Arcface loss.… More >

  • Open Access

    ARTICLE

    Credit Card Fraud Detection on Original European Credit Card Holder Dataset Using Ensemble Machine Learning Technique

    Yih Bing Chu*, Zhi Min Lim, Bryan Keane, Ping Hao Kong, Ahmed Rafat Elkilany, Osama Hisham Abusetta

    Journal of Cyber Security, Vol.5, pp. 33-46, 2023, DOI:10.32604/jcs.2023.045422

    Abstract The proliferation of digital payment methods facilitated by various online platforms and applications has led to a surge in financial fraud, particularly in credit card transactions. Advanced technologies such as machine learning have been widely employed to enhance the early detection and prevention of losses arising from potentially fraudulent activities. However, a prevalent approach in existing literature involves the use of extensive data sampling and feature selection algorithms as a precursor to subsequent investigations. While sampling techniques can significantly reduce computational time, the resulting dataset relies on generated data and the accuracy of the pre-processing… More >

  • Open Access

    ARTICLE

    Text Augmentation-Based Model for Emotion Recognition Using Transformers

    Fida Mohammad1,*, Mukhtaj Khan1, Safdar Nawaz Khan Marwat2, Naveed Jan3, Neelam Gohar4, Muhammad Bilal3, Amal Al-Rasheed5

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3523-3547, 2023, DOI:10.32604/cmc.2023.040202

    Abstract Emotion Recognition in Conversations (ERC) is fundamental in creating emotionally intelligent machines. Graph-Based Network (GBN) models have gained popularity in detecting conversational contexts for ERC tasks. However, their limited ability to collect and acquire contextual information hinders their effectiveness. We propose a Text Augmentation-based computational model for recognizing emotions using transformers (TA-MERT) to address this. The proposed model uses the Multimodal Emotion Lines Dataset (MELD), which ensures a balanced representation for recognizing human emotions. The model used text augmentation techniques to produce more training data, improving the proposed model’s accuracy. Transformer encoders train the deep… More >

  • Open Access

    ARTICLE

    A Comprehensive Analysis of Datasets for Automotive Intrusion Detection Systems

    Seyoung Lee1, Wonsuk Choi1, Insup Kim2, Ganggyu Lee2, Dong Hoon Lee1,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3413-3442, 2023, DOI:10.32604/cmc.2023.039583

    Abstract Recently, automotive intrusion detection systems (IDSs) have emerged as promising defense approaches to counter attacks on in-vehicle networks (IVNs). However, the effectiveness of IDSs relies heavily on the quality of the datasets used for training and evaluation. Despite the availability of several datasets for automotive IDSs, there has been a lack of comprehensive analysis focusing on assessing these datasets. This paper aims to address the need for dataset assessment in the context of automotive IDSs. It proposes qualitative and quantitative metrics that are independent of specific automotive IDSs, to evaluate the quality of datasets. These… More >

  • Open Access

    ARTICLE

    Sentiment Analysis Based on Performance of Linear Support Vector Machine and Multinomial Naïve Bayes Using Movie Reviews with Baseline Techniques

    Mian Muhammad Danyal1, Sarwar Shah Khan2,4, Muzammil Khan2,*, Muhammad Bilal Ghaffar1, Bilal Khan1, Muhammad Arshad3

    Journal on Big Data, Vol.5, pp. 1-18, 2023, DOI:10.32604/jbd.2023.041319

    Abstract Movies are the better source of entertainment. Every year, a great percentage of movies are released. People comment on movies in the form of reviews after watching them. Since it is difficult to read all of the reviews for a movie, summarizing all of the reviews will help make this decision without wasting time in reading all of the reviews. Opinion mining also known as sentiment analysis is the process of extracting subjective information from textual data. Opinion mining involves identifying and extracting the opinions of individuals, which can be positive, neutral, or negative. The… More >

  • Open Access

    ARTICLE

    Active Learning Strategies for Textual Dataset-Automatic Labelling

    Sher Muhammad Daudpota1, Saif Hassan1, Yazeed Alkhurayyif2,*, Abdullah Saleh Alqahtani3,4, Muhammad Haris Aziz5

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1409-1422, 2023, DOI:10.32604/cmc.2023.034157

    Abstract The Internet revolution has resulted in abundant data from various sources, including social media, traditional media, etcetera. Although the availability of data is no longer an issue, data labelling for exploiting it in supervised machine learning is still an expensive process and involves tedious human efforts. The overall purpose of this study is to propose a strategy to automatically label the unlabeled textual data with the support of active learning in combination with deep learning. More specifically, this study assesses the performance of different active learning strategies in automatic labelling of the textual dataset at… More >

Displaying 21-30 on page 3 of 142. Per Page