Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (65)
  • Open Access

    ARTICLE

    Predictive-Analysis-based Machine Learning Model for Fraud Detection with Boosting Classifiers

    M. Valavan, S. Rita*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 231-245, 2023, DOI:10.32604/csse.2023.026508 - 16 August 2022

    Abstract Fraud detection for credit/debit card, loan defaulters and similar types is achievable with the assistance of Machine Learning (ML) algorithms as they are well capable of learning from previous fraud trends or historical data and spot them in current or future transactions. Fraudulent cases are scant in the comparison of non-fraudulent observations, almost in all the datasets. In such cases detecting fraudulent transaction are quite difficult. The most effective way to prevent loan default is to identify non-performing loans as soon as possible. Machine learning algorithms are coming into sight as adept at handling such More >

  • Open Access

    ARTICLE

    Perspicacious Apprehension of HDTbNB Algorithm Opposed to Security Contravention

    Shyla1,*, Vishal Bhatnagar2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2431-2447, 2023, DOI:10.32604/iasc.2023.029126 - 19 July 2022

    Abstract The exponential pace of the spread of the digital world has served as one of the assisting forces to generate an enormous amount of information flowing over the network. The data will always remain under the threat of technological suffering where intruders and hackers consistently try to breach the security systems by gaining personal information insights. In this paper, the authors proposed the HDTbNB (Hybrid Decision Tree-based Naïve Bayes) algorithm to find the essential features without data scaling to maximize the model’s performance by reducing the false alarm rate and training period to reduce zero More >

  • Open Access

    ARTICLE

    Cervical Cancer Detection Based on Novel Decision Tree Approach

    S. R. Sylaja Vallee Narayan1,*, R. Jemila Rose2

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1025-1038, 2023, DOI:10.32604/csse.2023.022564 - 15 June 2022

    Abstract Cervical cancer is a disease that develops in the cervix’s tissue. Cervical cancer mortality is being reduced due to the growth of screening programmers. Cervical cancer screening is a big issue because the majority of cervical cancer screening treatments are invasive. Hence, there is apprehension about standard screening procedures, as well as the time it takes to learn the results. There are different methods for detecting problems in the cervix using Pap (Papanicolaou-stained) test, colposcopy, Computed Tomography (CT), Magnetic Resonance Image (MRI) and ultrasound. To obtain a clear sketch of the infected regions, using a… More >

  • Open Access

    ARTICLE

    Machine Learning and Artificial Neural Network for Predicting Heart Failure Risk

    Polin Rahman1, Ahmed Rifat1, MD. IftehadAmjad Chy1, Mohammad Monirujjaman Khan1,*, Mehedi Masud2, Sultan Aljahdali2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 757-775, 2023, DOI:10.32604/csse.2023.021469 - 01 June 2022

    Abstract Heart failure is now widely spread throughout the world. Heart disease affects approximately 48% of the population. It is too expensive and also difficult to cure the disease. This research paper represents machine learning models to predict heart failure. The fundamental concept is to compare the correctness of various Machine Learning (ML) algorithms and boost algorithms to improve models’ accuracy for prediction. Some supervised algorithms like K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), Logistic Regression (LR) are considered to achieve the best results. Some boosting algorithms like Extreme Gradient… More >

  • Open Access

    ARTICLE

    Vibration-Based Fault Diagnosis Study on a Hydraulic Brake System Using Fuzzy Logic with Histogram Features

    Alamelu Manghai T Marimuthu1, Jegadeeshwaran Rakkiyannan2,*, Lakshmipathi Jakkamputi1, Sugumaran Vaithiyanathan1, Sakthivel Gnanasekaran2

    Structural Durability & Health Monitoring, Vol.16, No.4, pp. 383-396, 2022, DOI:10.32604/sdhm.2022.011396 - 03 January 2023

    Abstract The requirement of fault diagnosis in the field of automobiles is growing higher day by day. The reliability of human resources for the fault diagnosis is uncertain. Brakes are one of the major critical components in automobiles that require closer and active observation. This research work demonstrates a fault diagnosis technique for monitoring the hydraulic brake system using vibration analysis. Vibration signals of a rotating element contain dynamic information about its health condition. Hence, the vibration signals were used for the brake fault diagnosis study. The study was carried out on a brake fault diagnosis More >

  • Open Access

    ARTICLE

    CNN Based Multi-Object Segmentation and Feature Fusion for Scene Recognition

    Adnan Ahmed Rafique1, Yazeed Yasin Ghadi2, Suliman A. Alsuhibany3, Samia Allaoua Chelloug4,*, Ahmad Jalal1, Jeongmin Park5

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4657-4675, 2022, DOI:10.32604/cmc.2022.027720 - 28 July 2022

    Abstract Latest advancements in vision technology offer an evident impact on multi-object recognition and scene understanding. Such scene-understanding task is a demanding part of several technologies, like augmented reality-based scene integration, robotic navigation, autonomous driving, and tourist guide. Incorporating visual information in contextually unified segments, convolution neural networks-based approaches will significantly mitigate the clutter, which is usual in classical frameworks during scene understanding. In this paper, we propose a convolutional neural network (CNN) based segmentation method for the recognition of multiple objects in an image. Initially, after acquisition and preprocessing, the image is segmented by using… More >

  • Open Access

    ARTICLE

    Single Point Cutting Tool Fault Diagnosis in Turning Operation Using Reduced Error Pruning Tree Classifier

    E. Akshay1, V. Sugumaran1,*, M. Elangovan2

    Structural Durability & Health Monitoring, Vol.16, No.3, pp. 255-270, 2022, DOI:10.32604/sdhm.2022.0271 - 18 July 2022

    Abstract Tool wear is inevitable in daily machining process since metal cutting process involves the chip rubbing the tool surface after it has been cut by the tool edge. Tool wear dominantly influences the deterioration of surface finish, geometric and dimensional tolerances of the workpiece. Moreover, for complete utilization of cutting tools and reduction of machine downtime during the machining process, it becomes necessary to understand the development of tool wear and predict its status before happening. In this study, tool condition monitoring system was used to monitor the behavior of a single point cutting tool… More >

  • Open Access

    ARTICLE

    Tyre Pressure Supervision of Two Wheeler Using Machine Learning

    Sujit S. Pardeshi1, Abhishek D. Patange1, R. Jegadeeshwaran2,*, Mayur R. Bhosale3

    Structural Durability & Health Monitoring, Vol.16, No.3, pp. 271-290, 2022, DOI:10.32604/sdhm.2022.010622 - 18 July 2022

    Abstract The regulation of tyre pressure is treated as a significant aspect of ‘tyre maintenance’ in the domain of autotronics. The manual supervision of a tyre pressure is typically an ignored task by most of the users. The existing instrumental scheme incorporates stand-alone monitoring with pressure and/or temperature sensors and requires regular manual conduct. Hence these schemes turn to be incompatible for on-board supervision and automated prediction of tyre condition. In this perspective, the Machine Learning (ML) approach acts appropriate as it exhibits comparison of specific performance in the past with present, intended for predicting the… More >

  • Open Access

    ARTICLE

    Weather Forecasting Prediction Using Ensemble Machine Learning for Big Data Applications

    Hadil Shaiba1, Radwa Marzouk2, Mohamed K Nour3, Noha Negm4,5, Anwer Mustafa Hilal6,*, Abdullah Mohamed7, Abdelwahed Motwakel6, Ishfaq Yaseen6, Abu Sarwar Zamani6, Mohammed Rizwanullah6

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3367-3382, 2022, DOI:10.32604/cmc.2022.030067 - 16 June 2022

    Abstract The agricultural sector’s day-to-day operations, such as irrigation and sowing, are impacted by the weather. Therefore, weather constitutes a key role in all regular human activities. Weather forecasting must be accurate and precise to plan our activities and safeguard ourselves as well as our property from disasters. Rainfall, wind speed, humidity, wind direction, cloud, temperature, and other weather forecasting variables are used in this work for weather prediction. Many research works have been conducted on weather forecasting. The drawbacks of existing approaches are that they are less effective, inaccurate, and time-consuming. To overcome these issues,… More >

  • Open Access

    ARTICLE

    An Efficient Ensemble Model for Various Scale Medical Data

    Heba A. Elzeheiry*, Sherief Barakat, Amira Rezk

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1283-1305, 2022, DOI:10.32604/cmc.2022.027345 - 18 May 2022

    Abstract Electronic Health Records (EHRs) are the digital form of patients’ medical reports or records. EHRs facilitate advanced analytics and aid in better decision-making for clinical data. Medical data are very complicated and using one classification algorithm to reach good results is difficult. For this reason, we use a combination of classification techniques to reach an efficient and accurate classification model. This model combination is called the Ensemble model. We need to predict new medical data with a high accuracy value in a small processing time. We propose a new ensemble model MDRL which is efficient… More >

Displaying 21-30 on page 3 of 65. Per Page