Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    A Boosted Tree-Based Predictive Model for Business Analytics

    Mohammad Al-Omari1, Fadi Qutaishat1, Majdi Rawashdeh1, Samah H. Alajmani2, Mehedi Masud3,*

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 515-527, 2023, DOI:10.32604/iasc.2023.030374

    Abstract Business Analytics is one of the vital processes that must be incorporated into any business. It supports decision-makers in analyzing and predicting future trends based on facts (Data-driven decisions), especially when dealing with a massive amount of business data. Decision Trees are essential for business analytics to predict business opportunities and future trends that can retain corporations’ competitive advantage and survival and improve their business value. This research proposes a tree-based predictive model for business analytics. The model is developed based on ranking business features and gradient-boosted trees. For validation purposes, the model is tested More >

  • Open Access

    ARTICLE

    DDoS Detection in SDN using Machine Learning Techniques

    Muhammad Waqas Nadeem, Hock Guan Goh*, Vasaki Ponnusamy, Yichiet Aun

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 771-789, 2022, DOI:10.32604/cmc.2022.021669

    Abstract Software-defined network (SDN) becomes a new revolutionary paradigm in networks because it provides more control and network operation over a network infrastructure. The SDN controller is considered as the operating system of the SDN based network infrastructure, and it is responsible for executing the different network applications and maintaining the network services and functionalities. Despite all its tremendous capabilities, the SDN face many security issues due to the complexity of the SDN architecture. Distributed denial of services (DDoS) is a common attack on SDN due to its centralized architecture, especially at the control layer of… More >

  • Open Access

    ARTICLE

    A Feature Selection Strategy to Optimize Retinal Vasculature Segmentation

    José Escorcia-Gutierrez1,4,*, Jordina Torrents-Barrena4, Margarita Gamarra2, Natasha Madera1, Pedro Romero-Aroca3, Aida Valls4, Domenec Puig4

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2971-2989, 2022, DOI:10.32604/cmc.2022.020074

    Abstract Diabetic retinopathy (DR) is a complication of diabetes mellitus that appears in the retina. Clinitians use retina images to detect DR pathological signs related to the occlusion of tiny blood vessels. Such occlusion brings a degenerative cycle between the breaking off and the new generation of thinner and weaker blood vessels. This research aims to develop a suitable retinal vasculature segmentation method for improving retinal screening procedures by means of computer-aided diagnosis systems. The blood vessel segmentation methodology relies on an effective feature selection based on Sequential Forward Selection, using the error rate of a… More >

  • Open Access

    ARTICLE

    Research on College English Teaching Model Based on Decision Trees

    Hao Wu1,*, B. Nagaraj2

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 81-95, 2021, DOI:10.32604/iasc.2021.017654

    Abstract English teaching has always attracted much attention. However, the processes of its transmission and acquirement is often divided into two separate parts, which seriously hinders the effective implementation of its objectives. Teachers attach particular importance to the choice of the curriculum structure and teaching material. Students are busy comprehending the assignments their teachers deem important. Under such a scenario, the effective acquisition of knowledge and the development of sustainable comprehensive abilities are ignored. The random forest algorithm in machine learning applications could play important role improving on the current English teaching system. A random forest… More >

  • Open Access

    ARTICLE

    Cloud-Based Diabetes Decision Support System Using Machine Learning Fusion

    Shabib Aftab1,2, Saad Alanazi3, Munir Ahmad1, Muhammad Adnan Khan4,*, Areej Fatima5, Nouh Sabri Elmitwally3,6

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1341-1357, 2021, DOI:10.32604/cmc.2021.016814

    Abstract Diabetes mellitus, generally known as diabetes, is one of the most common diseases worldwide. It is a metabolic disease characterized by insulin deficiency, or glucose (blood sugar) levels that exceed 200 mg/dL (11.1 ml/L) for prolonged periods, and may lead to death if left uncontrolled by medication or insulin injections. Diabetes is categorized into two main types—type 1 and type 2—both of which feature glucose levels above “normal,” defined as 140 mg/dL. Diabetes is triggered by malfunction of the pancreas, which releases insulin, a natural hormone responsible for controlling glucose levels in blood cells. Diagnosis… More >

  • Open Access

    ARTICLE

    Implementation of Decision Trees as an Alternative for the Support in the Decisionmaking within an Intelligent System in Order to Automatize the Regulation of the Vocs in Non-Industrial Inside Environments

    Liliana Aguilar, Salvador W. Nava-Díaz, Gabriel Chavira

    Computer Systems Science and Engineering, Vol.34, No.5, pp. 297-303, 2019, DOI:10.32604/csse.2019.34.297

    Abstract Natural ventilation is a component that provides a positive impact in the quality of air conditions in indoor environments, especially in non-industrial buildings. The maintenance of a continuous entrance of outside air through windows provides to the indoor a feasible and affordable manner to regulate and sustain low standards in theVOC (Volatile Organic Compounds). The technology and the Human Computer-Interaction have contributed to the creation of Intelligent Environments (EI) that provides to humans being a positive and non-intrusive responsiveness of the environment to improve their quality of life in daily activities. The Decision Trees for… More >

  • Open Access

    ARTICLE

    Failure Prediction, Lead Time Estimation and Health Degree Assessment for Hard Disk Drives Using Voting Based Decision Trees

    Kamaljit Kaur1, *, Kuljit Kaur2

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 913-946, 2019, DOI:10.32604/cmc.2019.07675

    Abstract Hard Disk drives (HDDs) are an essential component of cloud computing and big data, responsible for storing humongous volumes of collected data. However, HDD failures pose a huge challenge to big data servers and cloud service providers. Every year, about 10% disk drives used in servers crash at least twice, lead to data loss, recovery cost and lower reliability. Recently, the researchers have used SMART parameters to develop various prediction techniques, however, these methods need to be improved for reliability and real-world usage due to the following factors: they lack the ability to consider the More >

Displaying 1-10 on page 1 of 7. Per Page