Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (165)
  • Open Access

    ARTICLE

    Low Temperature H2 Production from Formic Acid Aqueous Solution Catalyzed on Metal Doped Mo2C

    Shuaishuai Zhu1, Zhigang Pan1,2, Yaqiu Tao1,2,*, Yue Chen1,2

    Journal of Renewable Materials, Vol.8, No.8, pp. 939-946, 2020, DOI:10.32604/jrm.2020.011197

    Abstract Hydrogen is recognized as a promising energy scours in the close future. Online hydrogen preparation from formic acid under mild reaction conditions causes extensive interests. Mo2C and metal (Fe, Ni, Co, K) doped Mo2C on granular activated carbon (GAC) were prepared and used as heterogeneous catalysts for H2 generation from formic acid on a fixed bed reactor at 100–250°C. The formic acid conversions on doped Mo2C-Me/GAC are clearly improved, especially at lower reaction temperatures. Co doping presents outstanding effect on H2 selectivity and conversion rate compared to Ni and Fe. A 56.3% formic acid conversion was reached on Mo2C-Co/GAC at… More >

  • Open Access

    ARTICLE

    A Polyp Detection Method Based on FBnet

    Jingjing Wan1, Taiyue Chen2, *, Bolun Chen2, 3, *, Yongtao Yu2, Yiyun Sheng2, Xinggang Ma1

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1263-1272, 2020, DOI:10.32604/cmc.2020.010098

    Abstract The incidence of colorectal cancer (CRC) in China has increased in recent years. The mortality rate of CRC has become one of the highest among all cancers; CRC increasingly affects the health and quality of people’s lives. However, due to the insufficiency of medical resources in China, the workload on medical doctors has further increased. In the past few decades, the adult CRC mortality and morbidity rate dropped sharply, mainly because of CRC screening and removal of adenomatous polyps. However, due to the differences in polyp itself and the skills of endoscopists, the detection rate of polyps varies greatly. In… More >

  • Open Access

    ARTICLE

    TdBrnn: An Approach to Learning Users’ Intention to Legal Consultation with Normalized Tensor Decomposition and Bi-LSTM

    Xiaoding Guo1, Hongli Zhang1, *, Lin Ye1, Shang Li1

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 315-336, 2020, DOI:10.32604/cmc.2020.07506

    Abstract With the development of Internet technology and the enhancement of people’s concept of the rule of law, online legal consultation has become an important means for the general public to conduct legal consultation. However, different people have different language expressions and legal professional backgrounds. This phenomenon may lead to the phenomenon of different descriptions of the same legal consultation. How to accurately understand the true intentions behind different users’ legal consulting statements is an important issue that needs to be solved urgently in the field of legal consulting services. Traditional intent understanding algorithms rely heavily on the lexical and semantic… More >

  • Open Access

    ARTICLE

    Real-Time Thermomechanical Modeling of PV Cell Fabrication via a POD-Trained RBF Interpolation Network

    Arka Das1, Anthony Khoury1, Eduardo Divo1, *, Victor Huayamave1, Andres Ceballos2, Ron Eaglin2, Alain Kassab3, Adam Payne4, Vijay Yelundur4, Hubert Seigneur5

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 757-777, 2020, DOI:10.32604/cmes.2020.08164

    Abstract This paper presents a numerical reduced order model framework to simulate the physics of the thermomechanical processes that occur during c-Si photovoltaic (PV) cell fabrication. A response surface based on a radial basis function (RBF) interpolation network trained by a Proper Orthogonal Decomposition (POD) of the solution fields is developed for fast and accurate approximations of thermal loading conditions on PV cells during the fabrication processes. The outcome is a stand-alone computational tool that provides, in real time, the quantitative and qualitative thermomechanical response as a function of user-controlled input parameters for fabrication processes with the precision of 3D finite… More >

  • Open Access

    ARTICLE

    A Numerical Study on Hydraulic Fracturing Problems via the Proper Generalized Decomposition Method

    Daobing Wang1, *, Sergio Zlotnik2, *, Pedro Díez2, Hongkui Ge3, Fujian Zhou3, Bo Yu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 703-720, 2020, DOI:10.32604/cmes.2020.08033

    Abstract The hydraulic fracturing is a nonlinear, fluid-solid coupling and transient problem, in most cases it is always time-consuming to simulate this process numerically. In recent years, although many numerical methods were proposed to settle this problem, most of them still require a large amount of computer resources. Thus it is a high demand to develop more effificient numerical approaches to achieve the real-time monitoring of the fracture geometry during the hydraulic fracturing treatment. In this study, a reduced order modeling technique namely Proper Generalized Decomposition (PGD), is applied to accelerate the simulations of the transient, non-linear coupled system of hydraulic… More >

  • Open Access

    ARTICLE

    Conceptual Modular Design of Auto Body Frame Based on Hybrid Optimization Method

    Yonghong Zhao1, Changsheng Wang2, Huanquan Yuan1, Yongcheng Li1, Chunlai Shan2, Wenbin Hou2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.1, pp. 351-376, 2020, DOI:10.32604/cmes.2020.08058

    Abstract This article presents a systematic research methodology of modular design for conceptual auto body frame by hybrid optimization method. A modified graph-based decomposition optimization algorithm is utilized to generate an optimal BIW assembly topo model composed of “potential modules”. The consistency constraint function in collaborative optimization is extended to maximize the commonality of modules and minimize the performance loss of all car types in the same product family simultaneously. A novel screening method is employed to select both “basic structures” and “reinforcement” modules based on the dimension optimization of the manufacturing elements and the optimal assembly mode; this allows for… More >

  • Open Access

    ARTICLE

    On the Application of the Adomian’s Decomposition Method to a Generalized Thermoelastic Infinite Medium with a Spherical Cavity in the Framework Three Different Models

    Najat A. Alghamdi1, Hamdy M. Youssef2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.5, pp. 597-611, 2019, DOI:10.32604/fdmp.2019.05131

    Abstract A mathematical model is elaborated for a thermoelastic infinite body with a spherical cavity. A generalized set of governing equations is formulated in the context of three different models of thermoelasticity: the Biot model, also known as “coupled thermoelasticity” model; the Lord-Shulman model, also referred to as “generalized thermoelasticity with one-relaxation time” approach; and the Green-Lindsay model, also called “generalized thermoelasticity with two-relaxation times” approach. The Adomian’s decomposition method is used to solve the related mathematical problem. The bounding plane of the cavity is subjected to harmonic thermal loading with zero heat flux and strain. Numerical results for the temperature,… More >

  • Open Access

    ARTICLE

    Parameters Compressing in Deep Learning

    Shiming He1, Zhuozhou Li1, Yangning Tang1, Zhuofan Liao1, Feng Li1, *, Se-Jung Lim2

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 321-336, 2020, DOI:10.32604/cmc.2020.06130

    Abstract With the popularity of deep learning tools in image decomposition and natural language processing, how to support and store a large number of parameters required by deep learning algorithms has become an urgent problem to be solved. These parameters are huge and can be as many as millions. At present, a feasible direction is to use the sparse representation technique to compress the parameter matrix to achieve the purpose of reducing parameters and reducing the storage pressure. These methods include matrix decomposition and tensor decomposition. To let vector take advance of the compressing performance of matrix decomposition and tensor decomposition,… More >

  • Open Access

    ARTICLE

    Non-Singular Method of Fundamental Solutions based on Laplace decomposition for 2D Stokes flow problems

    E. Sincich1, B. Šarler1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.5, pp. 393-415, 2014, DOI:10.3970/cmes.2014.099.393

    Abstract In this paper, a solution of a two-dimensional (2D) Stokes flow problem, subject to Dirichlet and fluid traction boundary conditions, is developed based on the Non-singular Method of Fundamental Solutions (NMFS). The Stokes equation is decomposed into three coupled Laplace equations for modified components of velocity, and pressure. The solution is based on the collocation of boundary conditions at the physical boundary by the fundamental solution of Laplace equation. The singularities are removed by smoothing over on disks around them. The derivatives on the boundary in the singular points are calculated through simple reference solutions. In NMFS no artificial boundary… More >

  • Open Access

    ARTICLE

    Feature-Based Vibration Monitoring of a Hydraulic Brake System Using Machine Learning

    T. M. Alamelu Manghai1, R. Jegadeeshwaran2

    Structural Durability & Health Monitoring, Vol.11, No.2, pp. 149-167, 2017, DOI:10.3970/sdhm.2017.011.149

    Abstract Hydraulic brakes in automobiles are an important control component used not only for the safety of the passenger but also for others moving on the road. Therefore, monitoring the condition of the brake components is inevitable. The brake elements can be monitored by studying the vibration characteristics obtained from the brake system using a proper signal processing technique through machine learning approaches. The vibration signals were captured using an accelerometer sensor under a various fault condition. The acquired vibration signals were processed for extracting meaningful information as features. The condition of the brake system can be predicted using a feature… More >

Displaying 91-100 on page 10 of 165. Per Page