Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Deep Convolution Neural Networks for Image-Based Android Malware Classification

    Amel Ksibi1,*, Mohammed Zakariah2, Latifah Almuqren1, Ala Saleh Alluhaidan1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4093-4116, 2025, DOI:10.32604/cmc.2025.059615 - 06 March 2025

    Abstract The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches, such as signature-based detection, are no longer effective due to the continuously advancing level of sophistication. To resolve this problem, efficient and flexible malware detection tools are needed. This work examines the possibility of employing deep CNNs to detect Android malware by transforming network traffic into image data representations. Moreover, the dataset used in this study is the CIC-AndMal2017, which contains 20,000 instances of network traffic across five distinct malware categories: a.… More >

  • Open Access

    ARTICLE

    Deep-BERT: Transfer Learning for Classifying Multilingual Offensive Texts on Social Media

    Md. Anwar Hussen Wadud1, M. F. Mridha1, Jungpil Shin2,*, Kamruddin Nur3, Aloke Kumar Saha4

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1775-1791, 2023, DOI:10.32604/csse.2023.027841 - 15 June 2022

    Abstract Offensive messages on social media, have recently been frequently used to harass and criticize people. In recent studies, many promising algorithms have been developed to identify offensive texts. Most algorithms analyze text in a unidirectional manner, where a bidirectional method can maximize performance results and capture semantic and contextual information in sentences. In addition, there are many separate models for identifying offensive texts based on monolingual and multilingual, but there are a few models that can detect both monolingual and multilingual-based offensive texts. In this study, a detection system has been developed for both monolingual… More >

  • Open Access

    ARTICLE

    Predicting Concrete Compressive Strength Using Deep Convolutional Neural Network Based on Image Characteristics

    Sanghyo Lee1, Yonghan Ahn2, Ha Young Kim3, *

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 1-17, 2020, DOI:10.32604/cmc.2020.011104 - 23 July 2020

    Abstract In this study, we examined the efficacy of a deep convolutional neural network (DCNN) in recognizing concrete surface images and predicting the compressive strength of concrete. A digital single-lens reflex (DSLR) camera and microscope were simultaneously used to obtain concrete surface images used as the input data for the DCNN. Thereafter, training, validation, and testing of the DCNNs were performed based on the DSLR camera and microscope image data. Results of the analysis indicated that the DCNN employing DSLR image data achieved a relatively higher accuracy. The accuracy of the DSLR-derived image data was attributed… More >

Displaying 1-10 on page 1 of 3. Per Page