Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (181)
  • Open Access

    ARTICLE

    Deep Neural Network Based Detection and Segmentation of Ships for Maritime Surveillance

    Kyamelia Roy1, Sheli Sinha Chaudhuri1, Sayan Pramanik2, Soumen Banerjee2,*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 647-662, 2023, DOI:10.32604/csse.2023.024997 - 01 June 2022

    Abstract In recent years, computer vision finds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture. Automatic ship detection with computer vision techniques provide an efficient means to monitor as well as track ships in water bodies. Waterways being an important medium of transport require continuous monitoring for protection of national security. The remote sensing satellite images of ships in harbours and water bodies are the image data that aid the neural network models to localize ships and to facilitate early identification of possible threats at sea. This paper proposes a deep learning… More >

  • Open Access

    ARTICLE

    ResCD-FCN: Semantic Scene Change Detection Using Deep Neural Networks

    S. Eliza Femi Sherley1,*, J. M. Karthikeyan1, N. Bharath Raj1, R. Prabakaran2, A. Abinaya1, S. V. V. Lakshmi3

    Journal on Artificial Intelligence, Vol.4, No.4, pp. 215-227, 2022, DOI:10.32604/jai.2022.034931 - 25 May 2023

    Abstract Semantic change detection is extension of change detection task in which it is not only used to identify the changed regions but also to analyze the land area semantic (labels/categories) details before and after the timelines are analyzed. Periodical land change analysis is used for many real time applications for valuation purposes. Majority of the research works are focused on Convolutional Neural Networks (CNN) which tries to analyze changes alone. Semantic information of changes appears to be missing, there by absence of communication between the different semantic timelines and changes detected over the region happens.… More >

  • Open Access

    ARTICLE

    State-of-Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Deep Neural Network

    M. Premkumar1, R. Sowmya2, S. Sridhar3, C. Kumar4, Mohamed Abbas5,6, Malak S. Alqahtani7, Kottakkaran Sooppy Nisar8,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6289-6306, 2022, DOI:10.32604/cmc.2022.030490 - 28 July 2022

    Abstract It is critical to have precise data about Lithium-ion batteries, such as the State-of-Charge (SoC), to maintain a safe and consistent functioning of battery packs in energy storage systems of electric vehicles. Numerous strategies for estimating battery SoC, such as by including the coulomb counting and Kalman filter, have been established. As a result of the differences in parameter values between each cell, when these methods are applied to high-capacity battery packs, it has difficulties sustaining the prediction accuracy of overall cells. As a result of aging, the variation in the parameters of each cell… More >

  • Open Access

    ARTICLE

    Residual Autoencoder Deep Neural Network for Electrical Capacitance Tomography

    Wael Deabes1,2,*, Kheir Eddine Bouazza1,3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6307-6326, 2022, DOI:10.32604/cmc.2022.030420 - 28 July 2022

    Abstract Great achievements have been made during the last decades in the field of Electrical Capacitance Tomography (ECT) image reconstruction. However, there is still a need to make these image reconstruction results faster and of better quality. Recently, Deep Learning (DL) is flourishing and is adopted in many fields. The DL is very good at dealing with complex nonlinear functions and it is built using several series of Artificial Neural Networks (ANNs). An ECT image reconstruction model using DNN is proposed in this paper. The proposed model mainly uses Residual Autoencoder called (ECT_ResAE). A large-scale dataset… More >

  • Open Access

    ARTICLE

    Image Steganography Using Deep Neural Networks

    Kavitha Chinniyan*, Thamil Vani Samiyappan, Aishvarya Gopu, Narmatha Ramasamy

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1877-1891, 2022, DOI:10.32604/iasc.2022.027274 - 25 May 2022

    Abstract Steganography is the technique of hiding secret data within ordinary data by modifying pixel values which appear normal to a casual observer. Steganography which is similar to cryptography helps in secret communication. The cryptography method focuses on the authenticity and integrity of the messages by hiding the contents of the messages. Sometimes, it is not only just enough to encrypt the message but also essential to hide the existence of the message itself. As this avoids misuse of data, this kind of encryption is less suspicious and does not catch attention. To achieve this, Stacked… More >

  • Open Access

    ARTICLE

    An Optimal Framework for SDN Based on Deep Neural Network

    Abdallah Abdallah1, Mohamad Khairi Ishak2, Nor Samsiah Sani3, Imran Khan4, Fahad R. Albogamy5, Hirofumi Amano6, Samih M. Mostafa7,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1125-1140, 2022, DOI:10.32604/cmc.2022.025810 - 18 May 2022

    Abstract Software-defined networking (SDN) is a new paradigm that promises to change by breaking vertical integration, decoupling network control logic from the underlying routers and switches, promoting (logical) network control centralization, and introducing network programming. However, the controller is similarly vulnerable to a “single point of failure”, an attacker can execute a distributed denial of service (DDoS) attack that invalidates the controller and compromises the network security in SDN. To address the problem of DDoS traffic detection in SDN, a novel detection approach based on information entropy and deep neural network (DNN) is proposed. This approach… More >

  • Open Access

    ARTICLE

    A Novel Optimizer in Deep Neural Network for Diabetic Retinopathy Classification

    Pranamita Nanda1,*, N. Duraipandian2

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1099-1110, 2022, DOI:10.32604/csse.2022.024695 - 09 May 2022

    Abstract In severe cases, diabetic retinopathy can lead to blindness. For decades, automatic classification of diabetic retinopathy images has been a challenge. Medical image processing has benefited from advances in deep learning systems. To enhance the accuracy of image classification driven by Convolutional Neural Network (CNN), balanced dataset is generated by data augmentation method followed by an optimized algorithm. Deep neural networks (DNN) are frequently optimized using gradient (GD) based techniques. Vanishing gradient is the main drawback of GD algorithms. In this paper, we suggest an innovative algorithm, to solve the above problem, Hypergradient Descent learning… More >

  • Open Access

    ARTICLE

    Mango Leaf Stress Identification Using Deep Neural Network

    Vinay Gautam1,*, Jyoti Rani2

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 849-864, 2022, DOI:10.32604/iasc.2022.025113 - 03 May 2022

    Abstract Mango is a widely growing and consumable fruit crop. The quantity and quality of production are most important to satisfy the needs of the huge population. Numerous research has been conducted to increase the yield of the crop. But a good number of crop harvests were destroyed due to various factors and leaf stress is one of them. The various types of stresses include biotic and abiotic that impact the mangoes productivity. But here the focus is on biotic stress factors such as fungus and bacteria. The effect of the stress can be reduced in… More >

  • Open Access

    ARTICLE

    Enhancing Collaborative and Geometric Multi-Kernel Learning Using Deep Neural Network

    Bareera Zafar1, Syed Abbas Zilqurnain Naqvi1, Muhammad Ahsan1, Allah Ditta2,*, Ummul Baneen1, Muhammad Adnan Khan3,4

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5099-5116, 2022, DOI:10.32604/cmc.2022.027874 - 21 April 2022

    Abstract This research proposes a method called enhanced collaborative and geometric multi-kernel learning (E-CGMKL) that can enhance the CGMKL algorithm which deals with multi-class classification problems with non-linear data distributions. CGMKL combines multiple kernel learning with softmax function using the framework of multi empirical kernel learning (MEKL) in which empirical kernel mapping (EKM) provides explicit feature construction in the high dimensional kernel space. CGMKL ensures the consistent output of samples across kernel spaces and minimizes the within-class distance to highlight geometric features of multiple classes. However, the kernels constructed by CGMKL do not have any explicit… More >

  • Open Access

    ARTICLE

    An Efficient Stacked-LSTM Based User Clustering for 5G NOMA Systems

    S. Prabha Kumaresan1, Chee Keong Tan2,*, Yin Hoe Ng1

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 6119-6140, 2022, DOI:10.32604/cmc.2022.027223 - 21 April 2022

    Abstract Non-orthogonal multiple access (NOMA) has been a key enabling technology for the fifth generation (5G) cellular networks. Based on the NOMA principle, a traditional neural network has been implemented for user clustering (UC) to maximize the NOMA system’s throughput performance by considering that each sample is independent of the prior and the subsequent ones. Consequently, the prediction of UC for the future ones is based on the current clustering information, which is never used again due to the lack of memory of the network. Therefore, to relate the input features of NOMA users and capture… More >

Displaying 91-100 on page 10 of 181. Per Page