Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (179)
  • Open Access

    ARTICLE

    MITRE ATT&CK-Driven Threat Analysis for Edge-IoT Environment and a Quantitative Risk Scoring Model

    Tae-hyeon Yun1, Moohong Min2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2707-2731, 2025, DOI:10.32604/cmes.2025.072357 - 26 November 2025

    Abstract The dynamic, heterogeneous nature of Edge computing in the Internet of Things (Edge-IoT) and Industrial IoT (IIoT) networks brings unique and evolving cybersecurity challenges. This study maps cyber threats in Edge-IoT/IIoT environments to the Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) framework by MITRE and introduces a lightweight, data-driven scoring model that enables rapid identification and prioritization of attacks. Inspired by the Factor Analysis of Information Risk model, our proposed scoring model integrates four key metrics: Common Vulnerability Scoring System (CVSS)-based severity scoring, Cyber Kill Chain–based difficulty estimation, Deep Neural Networks-driven detection scoring, and frequency… More >

  • Open Access

    ARTICLE

    Deep Learning Model for Identifying Internal Flaws Based on Image Quadtree SBFEM and Deep Neural Networks

    Hanyu Tao1,2, Dongye Sun1,2, Tao Fang1,2, Wenhu Zhao1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 521-536, 2025, DOI:10.32604/cmes.2025.072089 - 30 October 2025

    Abstract Structural internal flaws often weaken the performance and integral stability, while traditional nondestructive testing or inversion methods face challenges of high cost and low efficiency in quantitative flaw identification. To quickly identify internal flaws within structures, a deep learning model for flaw detection is proposed based on the image quadtree scaled boundary finite element method (SBFEM) combined with a deep neural network (DNN). The training dataset is generated from the numerical simulations using the balanced quadtree algorithm and SBFEM, where the structural domain is discretized based on recursive decomposition principles and mesh refinement is automatically… More >

  • Open Access

    ARTICLE

    Subdivision-Based Isogeometric BEM with Deep Neural Network Acceleration for Acoustic Uncertainty Quantification under Ground Reflection Effects

    Yingying Guo1, Ziyu Cui2, Jibing Shen1, Pei Li3,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4519-4550, 2025, DOI:10.32604/cmc.2025.071504 - 23 October 2025

    Abstract Accurate simulation of acoustic wave propagation in complex structures is of great importance in engineering design, noise control, and related research areas. Although traditional numerical simulation methods can provide precise results, they often face high computational costs when applied to complex models or problems involving parameter uncertainties, particularly in the presence of multiple coupled parameters or intricate geometries. To address these challenges, this study proposes an efficient algorithm for simulating the acoustic field of structures with adhered sound-absorbing materials while accounting for ground reflection effects. The proposed method integrates Catmull-Clark subdivision surfaces with the boundary… More >

  • Open Access

    ARTICLE

    Cuckoo Search-Deep Neural Network Hybrid Model for Uncertainty Quantification and Optimization of Dielectric Energy Storage in Na1/2Bi1/2TiO3-Based Ceramic Capacitors

    Shige Wang1, Yalong Liang2, Lian Huang3, Pei Li4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2729-2748, 2025, DOI:10.32604/cmc.2025.068351 - 23 September 2025

    Abstract This study introduces a hybrid Cuckoo Search-Deep Neural Network (CS-DNN) model for uncertainty quantification and composition optimization of Na1/2Bi1/2TiO3 (NBT)-based dielectric energy storage ceramics. Addressing the limitations of traditional ferroelectric materials—such as hysteresis loss and low breakdown strength under high electric fields—we fabricate (1 − x)NBBT8-xBMT solid solutions via chemical modification and systematically investigate their temperature stability and composition-dependent energy storage performance through XRD, SEM, and electrical characterization. The key innovation lies in integrating the CS metaheuristic algorithm with a DNN, overcoming local minima in training and establishing a robust composition-property prediction framework. Our model accurately… More >

  • Open Access

    ARTICLE

    System Modeling and Deep Learning-Based Security Analysis of Uplink NOMA Relay Networks with IRS and Fountain Codes

    Phu Tran Tin1, Minh-Sang Van Nguyen2, Quy-Anh Bui1, Agbotiname Lucky Imoize3, Byung-Seo Kim4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2521-2543, 2025, DOI:10.32604/cmes.2025.066669 - 31 August 2025

    Abstract Digital content such as games, extended reality (XR), and movies has been widely and easily distributed over wireless networks. As a result, unauthorized access, copyright infringement by third parties or eavesdroppers, and cyberattacks over these networks have become pressing concerns. Therefore, protecting copyrighted content and preventing illegal distribution in wireless communications has garnered significant attention. The Intelligent Reflecting Surface (IRS) is regarded as a promising technology for future wireless and mobile networks due to its ability to reconfigure the radio propagation environment. This study investigates the security performance of an uplink Non-Orthogonal Multiple Access (NOMA)… More >

  • Open Access

    ARTICLE

    Big Texture Dataset Synthesized Based on Gradient and Convolution Kernels Using Pre-Trained Deep Neural Networks

    Farhan A. Alenizi1, Faten Khalid Karim2,*, Alaa R. Al-Shamasneh3, Mohammad Hossein Shakoor4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1793-1829, 2025, DOI:10.32604/cmes.2025.066023 - 31 August 2025

    Abstract Deep neural networks provide accurate results for most applications. However, they need a big dataset to train properly. Providing a big dataset is a significant challenge in most applications. Image augmentation refers to techniques that increase the amount of image data. Common operations for image augmentation include changes in illumination, rotation, contrast, size, viewing angle, and others. Recently, Generative Adversarial Networks (GANs) have been employed for image generation. However, like image augmentation methods, GAN approaches can only generate images that are similar to the original images. Therefore, they also cannot generate new classes of data.… More >

  • Open Access

    ARTICLE

    Energy Efficient and Resource Allocation in Cloud Computing Using QT-DNN and Binary Bird Swarm Optimization

    Puneet Sharma1, Dhirendra Prasad Yadav1, Bhisham Sharma2,*, Surbhi B. Khan3,4,*, Ahlam Almusharraf 5

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 2179-2193, 2025, DOI:10.32604/cmc.2025.063190 - 29 August 2025

    Abstract The swift expansion of cloud computing has heightened the demand for energy-efficient and high-performance resource allocation solutions across extensive systems. This research presents an innovative hybrid framework that combines a Quantum Tensor-based Deep Neural Network (QT-DNN) with Binary Bird Swarm Optimization (BBSO) to enhance resource allocation while preserving Quality of Service (QoS). In contrast to conventional approaches, the QT-DNN accurately predicts task-resource mappings using tensor-based task representation, significantly minimizing computing overhead. The BBSO allocates resources dynamically, optimizing energy efficiency and task distribution. Experimental results from extensive simulations indicate the efficacy of the suggested strategy; the… More >

  • Open Access

    REVIEW

    Monocular 3D Human Pose Estimation for REBA Ergonomics: A Critical Review of Recent Advances

    Ahmad Mwfaq Bataineh1,2,*, Ahmad Sufril Azlan Mohamed1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 93-124, 2025, DOI:10.32604/cmc.2025.064250 - 09 June 2025

    Abstract Advancements in deep learning have considerably enhanced techniques for Rapid Entire Body Assessment (REBA) pose estimation by leveraging progress in three-dimensional human modeling. This survey provides an extensive overview of recent advancements, particularly emphasizing monocular image-based methodologies and their incorporation into ergonomic risk assessment frameworks. By reviewing literature from 2016 to 2024, this study offers a current and comprehensive analysis of techniques, existing challenges, and emerging trends in three-dimensional human pose estimation. In contrast to traditional reviews organized by learning paradigms, this survey examines how three-dimensional pose estimation is effectively utilized within musculoskeletal disorder (MSD)… More >

  • Open Access

    ARTICLE

    Context Encoding Deep Neural Network Driven Spectral Domain 3D-Optical Coherence Tomography Imaging in Purtscher Retinopathy Diagnosis

    Anand Deva Durai Chelladurai1, Theena Jemima Jebaseeli2, Omar Alqahtani1, Prasanalakshmi Balaji1,*, Jeniffer John Simon Christopher3

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1101-1122, 2025, DOI:10.32604/cmc.2025.062278 - 09 June 2025

    Abstract Optical Coherence Tomography (OCT) provides cross-sectional and three-dimensional reconstructions of the target tissue, allowing precise imaging and quantitative analysis of individual retinal layers. These images, based on optical inhomogeneities, reveal intricate cellular structures and are vital for tasks like retinal segmentation. The proposed study uses OCT images to identify significant differences in peripapillary retinal nerve fiber layer thickness. Incorporating spectral-domain analysis of OCT images significantly enhances the evaluation of Purtcher Retinopathy. To streamline this process, the study introduces a Context Encoding Deep Neural Network (CEDNN), which eliminates the time-consuming manual segmentation process while improving the… More >

  • Open Access

    ARTICLE

    An Adaptive Features Fusion Convolutional Neural Network for Multi-Class Agriculture Pest Detection

    Muhammad Qasim1,2, Syed M. Adnan Shah1, Qamas Gul Khan Safi1, Danish Mahmood2, Adeel Iqbal3,*, Ali Nauman3, Sung Won Kim3,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4429-4445, 2025, DOI:10.32604/cmc.2025.065060 - 19 May 2025

    Abstract Grains are the most important food consumed globally, yet their yield can be severely impacted by pest infestations. Addressing this issue, scientists and researchers strive to enhance the yield-to-seed ratio through effective pest detection methods. Traditional approaches often rely on preprocessed datasets, but there is a growing need for solutions that utilize real-time images of pests in their natural habitat. Our study introduces a novel two-step approach to tackle this challenge. Initially, raw images with complex backgrounds are captured. In the subsequent step, feature extraction is performed using both hand-crafted algorithms (Haralick, LBP, and Color… More >

Displaying 1-10 on page 1 of 179. Per Page