Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (178)
  • Open Access

    ARTICLE

    Classification of Fundus Images Based on Deep Learning for Detecting Eye Diseases

    Nakhim Chea1, Yunyoung Nam2,*

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 411-426, 2021, DOI:10.32604/cmc.2021.013390 - 12 January 2021

    Abstract Various techniques to diagnose eye diseases such as diabetic retinopathy (DR), glaucoma (GLC), and age-related macular degeneration (AMD), are possible through deep learning algorithms. A few recent studies have examined a couple of major diseases and compared them with data from healthy subjects. However, multiple major eye diseases, such as DR, GLC, and AMD, could not be detected simultaneously by computer-aided systems to date. There were just high-performance-outcome researches on a pair of healthy and eye-diseased group, besides of four categories of fundus image classification. To have a better knowledge of multi-categorical classification of fundus… More >

  • Open Access

    ARTICLE

    Identification of Thoracic Diseases by Exploiting Deep Neural Networks

    Saleh Albahli1, Hafiz Tayyab Rauf2,*, Muhammad Arif3, Md Tabrez Nafis4, Abdulelah Algosaibi5

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3139-3149, 2021, DOI:10.32604/cmc.2021.014134 - 28 December 2020

    Abstract With the increasing demand for doctors in chest related diseases, there is a 15% performance gap every five years. If this gap is not filled with effective chest disease detection automation, the healthcare industry may face unfavorable consequences. There are only several studies that targeted X-ray images of cardiothoracic diseases. Most of the studies only targeted a single disease, which is inadequate. Although some related studies have provided an identification framework for all classes, the results are not encouraging due to a lack of data and imbalanced data issues. This research provides a significant contribution More >

  • Open Access

    ARTICLE

    Automatic Channel Detection Using DNN on 2D Seismic Data

    Fahd A. Alhaidari1, Saleh A. Al-Dossary2, Ilyas A. Salih1,*, Abdlrhman M. Salem1, Ahmed S. Bokir1, Mahmoud O. Fares1, Mohammed I. Ahmed1, Mohammed S. Ahmed1

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 57-67, 2021, DOI:10.32604/csse.2021.013843 - 23 December 2020

    Abstract Geologists interpret seismic data to understand subsurface properties and subsequently to locate underground hydrocarbon resources. Channels are among the most important geological features interpreters analyze to locate petroleum reservoirs. However, manual channel picking is both time consuming and tedious. Moreover, similar to any other process dependent on human intervention, manual channel picking is error prone and inconsistent. To address these issues, automatic channel detection is both necessary and important for efficient and accurate seismic interpretation. Modern systems make use of real-time image processing techniques for different tasks. Automatic channel detection is a combination of different… More >

  • Open Access

    ARTICLE

    Swarm-LSTM: Condition Monitoring of Gearbox Fault Diagnosis Based on Hybrid LSTM Deep Neural Network Optimized by Swarm Intelligence Algorithms

    Gopi Krishna Durbhaka1, Barani Selvaraj1, Mamta Mittal2, Tanzila Saba3,*, Amjad Rehman3, Lalit Mohan Goyal4

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 2041-2059, 2021, DOI:10.32604/cmc.2020.013131 - 26 November 2020

    Abstract Nowadays, renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs. Most of the renewable energy sources involve turbines and their operation and maintenance are vital and a difficult task. Condition monitoring and fault diagnosis have seen remarkable and revolutionary up-gradation in approaches, practices and technology during the last decade. Turbines mostly do use a rotating type of machinery and analysis of those signals has been challenging to localize the defect. This paper proposes a new hybrid model wherein multiple swarm intelligence models have More >

  • Open Access

    ARTICLE

    Early Detection of Diabetic Retinopathy Using Machine Intelligence through Deep Transfer and Representational Learning

    Fouzia Nawaz1, Muhammad Ramzan1, Khalid Mehmood1, Hikmat Ullah Khan2, Saleem Hayat Khan3,4, Muhammad Raheel Bhutta5,*

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1631-1645, 2021, DOI:10.32604/cmc.2020.012887 - 26 November 2020

    Abstract Diabetic retinopathy (DR) is a retinal disease that causes irreversible blindness. DR occurs due to the high blood sugar level of the patient, and it is clumsy to be detected at an early stage as no early symptoms appear at the initial level. To prevent blindness, early detection and regular treatment are needed. Automated detection based on machine intelligence may assist the ophthalmologist in examining the patients’ condition more accurately and efficiently. The purpose of this study is to produce an automated screening system for recognition and grading of diabetic retinopathy using machine learning through More >

  • Open Access

    ARTICLE

    A Stacking-Based Deep Neural Network Approach for Effective Network Anomaly Detection

    Lewis Nkenyereye1, Bayu Adhi Tama2, Sunghoon Lim3,*

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 2217-2227, 2021, DOI:10.32604/cmc.2020.012432 - 26 November 2020

    Abstract An anomaly-based intrusion detection system (A-IDS) provides a critical aspect in a modern computing infrastructure since new types of attacks can be discovered. It prevalently utilizes several machine learning algorithms (ML) for detecting and classifying network traffic. To date, lots of algorithms have been proposed to improve the detection performance of A-IDS, either using individual or ensemble learners. In particular, ensemble learners have shown remarkable performance over individual learners in many applications, including in cybersecurity domain. However, most existing works still suffer from unsatisfactory results due to improper ensemble design. The aim of this study More >

  • Open Access

    ARTICLE

    Deep 3D-Multiscale DenseNet for Hyperspectral Image Classification Based on Spatial-Spectral Information

    Haifeng Song1, Weiwei Yang1,*, Haiyan Yuan2, Harold Bufford3

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1441-1458, 2020, DOI:10.32604/iasc.2020.011988 - 24 December 2020

    Abstract There are two main problems that lead to unsatisfactory classification performance for hyperspectral remote sensing images (HSIs). One issue is that the HSI data used for training in deep learning is insufficient, therefore a deeper network is unfavorable for spatial-spectral feature extraction. The other problem is that as the depth of a deep neural network increases, the network becomes more prone to overfitting. To address these problems, a dual-channel 3D-Multiscale DenseNet (3DMSS) is proposed to boost the discriminative capability for HSI classification. The proposed model has several distinct advantages. First, the model consists of dual… More >

  • Open Access

    ARTICLE

    A Study of Unmanned Path Planning Based on a Double-Twin RBM-BP Deep Neural Network

    Xuan Chen1,*, Zhiping Wan1, Jiatong Wang2

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1531-1548, 2020, DOI:10.32604/iasc.2020.011723 - 24 December 2020

    Abstract Addressing the shortcomings of unmanned path planning, such as significant error and low precision, a path-planning algorithm based on the whale optimization algorithm (WOA)-optimized double-blinking restricted Boltzmann machine-back propagation (RBM-BP) deep neural network model is proposed. The model consists mainly of two twin RBMs and one BP neural network. One twin RBM is used for feature extraction of the unmanned path location, and the other RBM is used for the path similarity calculation. The model uses the WOA algorithm to optimize parameters, which reduces the number of training sessions, shortens the training time, and reduces… More >

  • Open Access

    ARTICLE

    SRI-XDFM: A Service Reliability Inference Method Based on Deep Neural Network

    Yang Yang1,*, Jianxin Wang1, Zhipeng Gao1, Yonghua Huo2, Xuesong Qiu1

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1459-1475, 2020, DOI:10.32604/iasc.2020.011688 - 24 December 2020

    Abstract With the vigorous development of the Internet industry and the iterative updating of web service technologies, there are increasing web services with the same or similar functions in the ocean of platforms on the Internet. The issue of selecting the most reliable web service for users has received considerable critical attention. Aiming to solve this task, we propose a service reliability inference method based on deep neural network (SRI-XDFM) in this article. First, according to the pattern of the raw data in our scenario, we improve the performance of embedding by extracting self-correlated information with More >

  • Open Access

    ARTICLE

    A Deep Learning Based Approach for Response Prediction of Beam-like Structures

    Tianyu Wang1, Wael A. Altabey1,2, Mohammad Noori3,*, Ramin Ghiasi1

    Structural Durability & Health Monitoring, Vol.14, No.4, pp. 315-338, 2020, DOI:10.32604/sdhm.2020.011083 - 04 December 2020

    Abstract Beam-like structures are a class of common but important structures in engineering. Over the past few centuries, extensive research has been carried out to obtain the static and dynamic response of beam-like structures. Although building the finite element model to predict the response of these structures has proven to be effective, it is not always suitable in all the application cases because of high computational time or lack of accuracy. This paper proposes a novel approach to predict the deflection response of beam-like structures based on a deep neural network and the governing differential equation More >

Displaying 151-160 on page 16 of 178. Per Page