Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (181)
  • Open Access

    ARTICLE

    Deep Neural Network Driven Automated Underwater Object Detection

    Ajisha Mathias1, Samiappan Dhanalakshmi1,*, R. Kumar1, R. Narayanamoorthi2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5251-5267, 2022, DOI:10.32604/cmc.2022.021168 - 11 October 2021

    Abstract Object recognition and computer vision techniques for automated object identification are attracting marine biologist's interest as a quicker and easier tool for estimating the fish abundance in marine environments. However, the biggest problem posed by unrestricted aquatic imaging is low luminance, turbidity, background ambiguity, and context camouflage, which make traditional approaches rely on their efficiency due to inaccurate detection or elevated false-positive rates. To address these challenges, we suggest a systemic approach to merge visual features and Gaussian mixture models with You Only Look Once (YOLOv3) deep network, a coherent strategy for recognizing fish in… More >

  • Open Access

    ARTICLE

    Deep Neural Artificial Intelligence for IoT Based Tele Health Data Analytics

    Nithya Rekha Sivakumar1,*, Ahmed Zohair Ibrahim2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4467-4483, 2022, DOI:10.32604/cmc.2022.019041 - 11 October 2021

    Abstract

    Tele health utilizes information and communication mechanisms to convey medical information for providing clinical and educational assistances. It makes an effort to get the better of issues of health service delivery involving time factor, space and laborious terrains, validating cost-efficiency and finer ingress in both developed and developing countries. Tele health has been categorized into either real-time electronic communication, or store-and-forward communication. In recent years, a third-class has been perceived as remote healthcare monitoring or tele health, presuming data obtained via Internet of Things (IOT). Although, tele health data analytics and machine learning have been researched

    More >

  • Open Access

    ARTICLE

    Deep Rank-Based Average Pooling Network for Covid-19 Recognition

    Shui-Hua Wang1, Muhammad Attique Khan2, Vishnuvarthanan Govindaraj3, Steven L. Fernandes4, Ziquan Zhu5, Yu-Dong Zhang6,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2797-2813, 2022, DOI:10.32604/cmc.2022.020140 - 27 September 2021

    Abstract (Aim) To make a more accurate and precise COVID-19 diagnosis system, this study proposed a novel deep rank-based average pooling network (DRAPNet) model, i.e., deep rank-based average pooling network, for COVID-19 recognition. (Methods) 521 subjects yield 1164 slice images via the slice level selection method. All the 1164 slice images comprise four categories: COVID-19 positive; community-acquired pneumonia; second pulmonary tuberculosis; and healthy control. Our method firstly introduced an improved multiple-way data augmentation. Secondly, an n-conv rank-based average pooling module (NRAPM) was proposed in which rank-based pooling—particularly, rank-based average pooling (RAP)—was employed to avoid overfitting. Third, a… More >

  • Open Access

    ARTICLE

    Deep Reinforcement Learning Model for Blood Bank Vehicle Routing Multi-Objective Optimization

    Meteb M. Altaf1,*, Ahmed Samir Roshdy2, Hatoon S. AlSagri3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3955-3967, 2022, DOI:10.32604/cmc.2022.019448 - 27 September 2021

    Abstract The overall healthcare system has been prioritized within development top lists worldwide. Since many national populations are aging, combined with the availability of sophisticated medical treatments, healthcare expenditures are rapidly growing. Blood banks are a major component of any healthcare system, which store and provide the blood products needed for organ transplants, emergency medical treatments, and routine surgeries. Timely delivery of blood products is vital, especially in emergency settings. Hence, blood delivery process parameters such as safety and speed have received attention in the literature, as well as other parameters such as delivery cost. In… More >

  • Open Access

    ARTICLE

    A Saliency Based Image Fusion Framework for Skin Lesion Segmentation and Classification

    Javaria Tahir1, Syed Rameez Naqvi2,*, Khursheed Aurangzeb3, Musaed Alhussein3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3235-3250, 2022, DOI:10.32604/cmc.2022.018949 - 27 September 2021

    Abstract Melanoma, due to its higher mortality rate, is considered as one of the most pernicious types of skin cancers, mostly affecting the white populations. It has been reported a number of times and is now widely accepted, that early detection of melanoma increases the chances of the subject’s survival. Computer-aided diagnostic systems help the experts in diagnosing the skin lesion at earlier stages using machine learning techniques. In this work, we propose a framework that accurately segments, and later classifies, the lesion using improved image segmentation and fusion methods. The proposed technique takes an image More >

  • Open Access

    ARTICLE

    A Multilevel Deep Feature Selection Framework for Diabetic Retinopathy Image Classification

    Farrukh Zia1, Isma Irum1, Nadia Nawaz Qadri1, Yunyoung Nam2,*, Kiran Khurshid3, Muhammad Ali1, Imran Ashraf4, Muhammad Attique Khan4

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2261-2276, 2022, DOI:10.32604/cmc.2022.017820 - 27 September 2021

    Abstract Diabetes or Diabetes Mellitus (DM) is the upset that happens due to high glucose level within the body. With the passage of time, this polygenic disease creates eye deficiency referred to as Diabetic Retinopathy (DR) which can cause a major loss of vision. The symptoms typically originate within the retinal space square in the form of enlarged veins, liquid dribble, exudates, haemorrhages and small scale aneurysms. In current therapeutic science, pictures are the key device for an exact finding of patients’ illness. Meanwhile, an assessment of new medicinal symbolisms stays complex. Recently, Computer Vision (CV)… More >

  • Open Access

    ARTICLE

    ResNet CNN with LSTM Based Tamil Text Detection from Video Frames

    I. Muthumani1,*, N. Malmurugan2, L. Ganesan3

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 917-928, 2022, DOI:10.32604/iasc.2022.018030 - 22 September 2021

    Abstract Text content in videos includes applications such as library video retrievals, live-streaming advertisements, opinion mining, and video synthesis. The key components of such systems include video text detection and acknowledgments. This paper provides a framework to detect and accept text video frames, aiming specifically at the cursive script of Tamil text. The model consists of a text detector, script identifier, and text recognizer. The identification in video frames of textual regions is performed using deep neural networks as object detectors. Textual script content is associated with convolutional neural networks (CNNs) and recognized by combining ResNet More >

  • Open Access

    ARTICLE

    Deep Learning Approach for Analysis and Characterization of COVID-19

    Indrajeet Kumar1, Sultan S. Alshamrani2, Abhishek Kumar3, Jyoti Rawat4, Kamred Udham Singh1, Mamoon Rashid5,*, Ahmed Saeed AlGhamdi6

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 451-468, 2022, DOI:10.32604/cmc.2022.019443 - 07 September 2021

    Abstract Early diagnosis of a pandemic disease like COVID-19 can help deal with a dire situation and help radiologists and other experts manage human resources more effectively. In a recent pandemic, laboratories perform diagnostics manually, which requires a lot of time and expertise of the laboratorial technicians to yield accurate results. Moreover, the cost of kits is high, and well-equipped labs are needed to perform this test. Therefore, other means of diagnosis is highly desirable. Radiography is one of the existing methods that finds its use in the diagnosis of COVID-19. The radiography observes change in… More >

  • Open Access

    ARTICLE

    Fruit Ripeness Prediction Based on DNN Feature Induction from Sparse Dataset

    Wan Hyun Cho1, Sang Kyoon Kim2, Myung Hwan Na1, In Seop Na3,*

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 4003-4024, 2021, DOI:10.32604/cmc.2021.018758 - 24 August 2021

    Abstract Fruit processing devices, that automatically detect the freshness and ripening stages of fruits are very important in precision agriculture. Recently, based on deep learning, many attempts have been made in computer image processing, to monitor the ripening stage of fruits. However, it is time-consuming to acquire images of the various ripening stages to be used for training, and it is difficult to measure the ripening stages of fruits accurately with a small number of images. In this paper, we propose a prediction system that can automatically determine the ripening stage of fruit by a combination… More >

  • Open Access

    ARTICLE

    An Adversarial Network-based Multi-model Black-box Attack

    Bin Lin1, Jixin Chen2, Zhihong Zhang3, Yanlin Lai2, Xinlong Wu2, Lulu Tian4, Wangchi Cheng5,*

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 641-649, 2021, DOI:10.32604/iasc.2021.016818 - 11 August 2021

    Abstract Researches have shown that Deep neural networks (DNNs) are vulnerable to adversarial examples. In this paper, we propose a generative model to explore how to produce adversarial examples that can deceive multiple deep learning models simultaneously. Unlike most of popular adversarial attack algorithms, the one proposed in this paper is based on the Generative Adversarial Networks (GAN). It can quickly produce adversarial examples and perform black-box attacks on multi-model. To enhance the transferability of the samples generated by our approach, we use multiple neural networks in the training process. Experimental results on MNIST showed that More >

Displaying 131-140 on page 14 of 181. Per Page