Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (215)
  • Open Access

    ARTICLE

    Effects of Surface Orientation and Temperature on Tensile Deformation of Gold Nanowires

    Qunfeng Liu1, gping Shen2

    CMC-Computers, Materials & Continua, Vol.17, No.1, pp. 59-76, 2010, DOI:10.3970/cmc.2010.017.059

    Abstract Molecular Dynamics (MD) simulations have been performed using the EAM potential to investigate the deformation behaviors and mechanical properties of <100>/{100} gold nanowires with square cross-section at a certain strain rate under different temperatures ranging from 10 K to 700 K. It is found that <100>/{100} gold nanowires at high temperatures tend to form the extended stable nanobridges-Helical Multi-shell Structure (HMS), which is similar to the deformation behavior of <110> gold nanowires at room temperature reported in the previous experimental observations and simulations. The effect of temperature on the mechanical properties and deformation behaviors of gold nanowires was analyzed. The… More >

  • Open Access

    ARTICLE

    Numerical and Experimental Analysis of Welding Deformation in Thin Plates

    M.R. Khoshravan1 and M.A. Setoodeh1

    CMC-Computers, Materials & Continua, Vol.16, No.3, pp. 195-228, 2010, DOI:10.3970/cmc.2010.016.195

    Abstract The use of welding to permanently join plates is common in industry due to its high efficiency. But welding creates thermal stresses, which can lead to residual stresses and physical distortion. This phenomenon directly influences the buckling stiffness of the welded structure. The welding distortion not only makes difficult the erection of the project, but also influences the final quality and cost of production. In this research, the thermo-elastic-plastic conditions were simulated by a three-dimensional (3D) finite element model (FE). Mechanical and thermal properties of the material were applied to the model, leading to eigenvalue analysis of the thermal and… More >

  • Open Access

    ARTICLE

    Study of Deformation Mechanisms in Titanium by Interrupted Rolling and Channel Die Compression Tests

    Lei Bao1,2, Christophe Schuman1, Jean-sébastien Lecomte1, Marie-Jeanne Philippe1, Xiang Zhao2, Liang Zuo2, Claude Esling1

    CMC-Computers, Materials & Continua, Vol.15, No.2, pp. 113-128, 2010, DOI:10.3970/cmc.2010.015.113

    Abstract The mechanisms of small plastic deformation of titanium (T40) during cold rolling and channel die compression by means of "interrupted in situ" EBSD orientation measurements were studied. These interrupted EBSD orientation measurements allow to determine the rotation flow field which leads to the development of the crystallographic texture during the plastic deformation. Results show that during rolling, tension twins and compression twins occur and various glide systems are activated, the number of grains being larger with twins than with slip traces. In channel die compression, only tension twins are observed in some grains, whereas slip traces can be spotted in… More >

  • Open Access

    ARTICLE

    An Eulerian-Based Formulation for Studying the Evolution of the Microstructure under Plastic Deformations

    S.Ahmadi1, B.L.Adams1 , D.T.Fullwood1

    CMC-Computers, Materials & Continua, Vol.14, No.2, pp. 141-170, 2009, DOI:10.3970/cmc.2009.014.141

    Abstract In this paper, a model is introduced to examine the evolution of the microstructure function under plastic deformations. This model is based upon a double continuity relationship that conserves both material particles in the mass space and orientations in the orientation space. An Eulerian description of the motion of material particles and orientations is considered, and continuity relations are derived for both spaces. To show how the proposed model works, two different case studies are provided. In the mass space, the continuity relation is used to examine the evolution of the microstructure function of a two-phase (isotropic) material; while, in… More >

  • Open Access

    ARTICLE

    A Displacement Solution to Transverse Shear Loading of Composite Beams by BEM

    E.J. Sapountzakis1, V.G. Mokos2

    CMC-Computers, Materials & Continua, Vol.10, No.1, pp. 1-40, 2009, DOI:10.3970/cmc.2009.010.001

    Abstract In this paper the boundary element method is employed to develop a displacement solution for the general transverse shear loading problem of composite beams of arbitrary constant cross section. The composite beam (thin or thick walled) consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli and are firmly bonded together. The analysis of the beam is accomplished with respect to a coordinate system that has its origin at the centroid of the cross section, while its axes are not necessarily the principal bending ones. The transverse… More >

Displaying 211-220 on page 22 of 215. Per Page