Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (231)
  • Open Access

    ARTICLE

    Plate Bending Analysis by using a Modified Plate Theory

    Y. Suetake1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.3, pp. 103-110, 2006, DOI:10.3970/cmes.2006.011.103

    Abstract Since Reissner and Mindlin proposed their classical thick plate theories, many authors have presented refined theories including transverse shear deformation. Most of those plate theories have tended to use higher order power series for displacements and stresses along the thickness in order to achieve the higher accuracy. However, they have not carefully noticed lateral load effect. In this paper, we pay attention to constitution of the lateral loads: a body force and upper and lower surface tractions. Especially we formulate a modified theory for plate bending, in which the effect of a body force is More >

  • Open Access

    ARTICLE

    A Quasicontinuum Method for Deformations of Carbon Nanotubes

    Jong Youn Park1, Young-Sam Cho2, Sung Youb Kim1, Sukky Jun3, Seyoung Im1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.2, pp. 61-72, 2006, DOI:10.3970/cmes.2006.011.061

    Abstract We present a coarse-graining computation for deformations of CNTs (carbon nanotubes) via QC (quasicontinuum), particularly targeting analysis of multi-walled carbon nanotubes. Higher order triangular elements are utilized for proper interpolation of atom positions of the CNT on the basis of QC approach. The computing scheme enables one to differentiate between the fully atomistic zone and the coarse-grained zone in the framework of the multiscale computing. Several numerical examples demonstrate the effectiveness and accuracy of the present methodology. More >

  • Open Access

    ARTICLE

    Scalings for Droplet Sizes in Shear-Driven Breakup: Non-Microfluidic Ways to Monodisperse Emulsions

    V. Cristini1, Y. Renardy2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 77-94, 2006, DOI:10.3970/fdmp.2006.002.077

    Abstract We review studies of a drop of viscous liquid, suspended in another liquid, and undergoing breakup in an impulsively started shear flow. Stokes flow conditions as well as the effects of inertia are reported. They reveal a universal scaling for the fragments, which allows one to use sheared emulsions to produce monodispersity as an alternative to microfluidic devices. More >

  • Open Access

    ARTICLE

    Molecular-dynamics Study on Crack Growth Behavior Relevant to Crystal Nucleation in Amorphous Metal

    R. Matsumoto1, M. Nakagaki1, A. Nakatani2, H. Kitagawa3

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.1, pp. 75-84, 2005, DOI:10.3970/cmes.2005.009.075

    Abstract In this paper, the internal structure-changes around the crack-tip and the pertinent crack growth behavior in an amorphous metal were studied by a molecular dynamics (MD) simulation. In order to perform a large scale calculation, the domain decomposition method was used for parallel calculation. The Finnis-Sinclair potential for$\alpha$-iron was used to describe the interatomic potential. Computed results show that nano-scaled crystalline phase grows around the crack-tip. The distribution of deformation zones and deformation mechanism are significantly altered. While grains are relatively small, they are not deformed, and the most amorphous-crystal interfaces have a large strain More >

  • Open Access

    ARTICLE

    Computational Characterization and Evaluation of Deformation Behavior of Spherulite of High Density Polyethylene in Mesoscale Domain

    Y. Tomita 1, M. Uchida 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.3, pp. 239-248, 2005, DOI:10.3970/cmes.2005.010.239

    Abstract In this study, we clarified the micro- to mesoscopic deformation behavior of a semicrystalline polymer by employing a large-deformation finite element homogenization method. The crystalline plasticity theory with a penalty method for the inextensibility of the chain direction and the nonaffine molecular chain network theory were applied for the representation of the deformation behavior of the crystalline and amorphous phases, respectively, in the composite microstructure of the semicrystalline polymer. The 3D structure of lamellae in the spherulite of high-density polyethylene was modeled, and the tensile and compressive deformation behaviors were investigated. A series of computational More >

  • Open Access

    ARTICLE

    Estimation of the Mechanical Properties of Amorphous Metal with a Dispersed Nano-crystalline Particle by Molecular Dynamics Simulation

    R. Matsumoto, M. Nakagaki

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.3, pp. 187-198, 2005, DOI:10.3970/cmes.2005.010.187

    Abstract Large-scale molecular dynamics simulations of tensile deformation of amorphous metals containing a nano-crystalline particle were performed in order to clarify the effects of particle size and crystal volume fraction on the deformation mechanism and strength. It became clear that particle size has very little effect, while crystal volume fraction has a substantial influence. Elastic modulus and flow stress intensify as crystal volume fraction increases. Furthermore, the stress in the crystal phase continues to increase, even after yielding in the amorphous phase. Consequently, work-hardening effects appear, preventing localization of plastic deformation. Thus, the dispersed nano-crystalline particles… More >

  • Open Access

    ARTICLE

    Issues in Modeling Heterogeneous Deformations in Polycrystalline Metals using Multiscale Approaches

    Paul R. Dawson1, Donald E. Boyce2, Ronald Rogge3

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.2, pp. 123-142, 2005, DOI:10.3970/cmes.2005.010.123

    Abstract Computational mechanics provides a powerful environment for modeling the evolution of material structure during deformation processes and for associating that evolution with changes to the mechanical properties. In this paper, we illustrate a two-scale formulation that links the mechanical loading applied at the scale of a component (the continuum scale) to the responses of the material at the scale of the crystals that comprise it (the crystal scale). Employing the capabilities offered by computational mechanics, we can better understand how heterogeneity of deformation arising at both the continuum and crystal scales influences the behaviors observed More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear Problems with Large Deformations and Rotations

    Z. D. Han1, A. M. Rajendran2, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.1, pp. 1-12, 2005, DOI:10.3970/cmes.2005.010.001

    Abstract A nonlinear formulation of the Meshless Local Petrov-Galerkin (MLPG) finite-volume mixed method is developed for the large deformation analysis of static and dynamic problems. In the present MLPG large deformation formulation, the velocity gradients are interpolated independently, to avoid the time consuming differentiations of the shape functions at all integration points. The nodal values of velocity gradients are expressed in terms of the independently interpolated nodal values of displacements (or velocities), by enforcing the compatibility conditions directly at the nodal points. For validating the present large deformation MLPG formulation, two example problems are considered: 1)… More >

  • Open Access

    ARTICLE

    Nonlinear Elastic and Viscoelastic Deformation of the Human Red Blood Cell with Optical Tweezers

    J. P. Mills1,1, L. Qie2,2, M. Dao1,1, C. T. Lim2,2, S. Suresh1,3

    Molecular & Cellular Biomechanics, Vol.1, No.3, pp. 169-180, 2004, DOI:10.3970/mcb.2004.001.169

    Abstract Studies of the deformation characteristics of single biological cells can offer insights into the connections among mechanical state, biochemical response and the onset and progression of diseases. Deformation imposed by optical tweezers provides a useful means for the study of single cell mechanics under a variety of well-controlled stress-states. In this paper, we first critically review recent advances in the study of single cell mechanics employing the optical tweezers method, and assess its significance and limitations in comparison to other experimental tools. We then present new experimental and computational results on shape evolution, force--extension curves, More >

  • Open Access

    ARTICLE

    Nucleation and Propagation of Deformation Twin in Polysynthetically Twinned TiAl

    L. G. Zhou1, L. M. Hsiung2, Hanchen Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.3, pp. 245-252, 2004, DOI:10.3970/cmes.2004.006.245

    Abstract Using molecular dynamics simulations, we study the deformation of polysynthetically twinned (PST) TiAl at room temperature. The simulation cell is pre-strained and thermodynamically relaxed to zero stress, so that no dislocations pre-exist in γ−α2 interfaces. A uniaxial compression is then applied along one 1/6<112] direction. Our results show that interfacial dislocation pairs nucleate at the γ−α2 interface under the compression. The glide and agglomeration of these dislocations lead to the nucleation of deformation twins from the interface. Based on our studies, twins may nucleate without pre-existing interfacial dislocations. Further we have monitored the propagation of the More >

Displaying 211-220 on page 22 of 231. Per Page