Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (138)
  • Open Access

    ARTICLE

    Improved Logistic Regression Algorithm Based on Kernel Density Estimation for Multi-Classification with Non-Equilibrium Samples

    Yang Yu1, Zeyu Xiong1,*, Yueshan Xiong1, Weizi Li2

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 103-118, 2019, DOI:10.32604/cmc.2019.05154

    Abstract Logistic regression is often used to solve linear binary classification problems such as machine vision, speech recognition, and handwriting recognition. However, it usually fails to solve certain nonlinear multi-classification problem, such as problem with non-equilibrium samples. Many scholars have proposed some methods, such as neural network, least square support vector machine, AdaBoost meta-algorithm, etc. These methods essentially belong to machine learning categories. In this work, based on the probability theory and statistical principle, we propose an improved logistic regression algorithm based on kernel density estimation for solving nonlinear multi-classification. We have compared our approach with other methods using non-equilibrium samples,… More >

  • Open Access

    ARTICLE

    An Efficient Greedy Traffic Aware Routing Scheme for Internet of Vehicles

    Belghachi Mohammed1,*, Debab Naouel1

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 959-972, 2019, DOI:10.32604/cmc.2019.07580

    Abstract A new paradigm of VANET has emerged in recent years: Internet of Vehicles (IoV). These networks are formed on the roads and streets between travellers who have relationships, interactions and common social interests. Users of these networks exchange information of common interest, for example, traffic jams and dangers on the way. They can also exchange files such as multimedia files. IoV is considered as part of the Internet of Things (IoT) where objects are vehicles, which can create a multitude of services dedicated to the intelligent transportation system. The interest is to permit to all connected vehicles to communicate with… More >

  • Open Access

    ARTICLE

    Molecular Structure and Electronic Spectra of CoS under the Radiation Fields

    Qijun Wu1, Limin Han1, Lingxuan Wang2, Xun Gong3,*

    CMC-Computers, Materials & Continua, Vol.55, No.3, pp. 393-403, 2018, DOI: 10.3970/cmc.2018.01740

    Abstract We optimized the ground-state stable configuration of CoS molecule in different external radiation fields (0-0.04 atomic units (a.u.)) at the basis set level of 6-311G++ (d, p) using the B3LYP density functional theory. On this basis, the molecular structure, total energy, energy gap, and the intensities of infrared ray (IR) spectra, Raman spectra, and ultraviolet-visible (UV-Vis) absorption spectra of CoS molecule were computed using the same method. The results showed that the molecular structure changed greatly under the effect of the external radiation fields and had significant dependency on the radiation fields. The total energy of CoS molecule grew slightly… More >

  • Open Access

    ARTICLE

    Electronic Structure and Physical Characteristics of Dioxin Under External Electric Field

    Wenyi Yin1,2, Xiangyun Zhang1,2,†, Bumaliya Abulimiti3,*, Yuzhu Liu1,2,*, Yihui Yan1,2, Fengbin Zhou1,2, Feng Jin4

    CMC-Computers, Materials & Continua, Vol.55, No.1, pp. 165-176, 2018, DOI:10.3970/cmc.2018.055.165

    Abstract Dioxin is a highly toxic and caustic substance, which widely existed in the atmosphere, soil and water with tiny particles. Dioxin pollution has become a major problem that concerns the survival of mankind, which must be strictly controlled. The bond length, bond angle, energy, dipole moment, orbital energy level distribution of dioxin under the external field are investigated using DFT (density functional theory) on basis set level of B3LYP/6-31G (d, p). The results indicate that with the increase of the electric field, the length of one Carbon-Oxygen bond increases while another Carbon-Oxygen bond decreases. The energy gradually decreases with the… More >

  • Open Access

    ARTICLE

    Bandgap Opening in Metallic Carbon Nanotubes Due to Silicon Adatoms

    Branden B. Kappes1, Cristian V. Ciobanu2

    CMC-Computers, Materials & Continua, Vol.38, No.1, pp. 1-16, 2013, DOI:10.3970/cmc.2013.038.001

    Abstract Controlling the bandgap of carbon nanostructures is a key factor in the development of mainstream applications of carbon-based nanoelectronic devices. This is particularly important in the cases where it is desired that the carbon nanostructures are the active elements, as opposed to being the conductive leads between other elements of the device. Here, we report density functional theory calculations of the effect of silicon impurities on the electronic properties of carbon nanotubes (CNTs). We have found that Si adatoms can open up a bandgap in intrinsically metallic CNTs, even when the linear density of Si atoms is low enough that… More >

  • Open Access

    ARTICLE

    Design of Aligned Carbon Nanotubes Structures Using Structural Mechanics Modeling
    Part 2: Aligned Carbon Nanotubes Structure Modeling

    J. Joseph1, Y. C. Lu1

    CMC-Computers, Materials & Continua, Vol.37, No.1, pp. 59-75, 2013, DOI:10.3970/cmc.2013.037.059

    Abstract The aligned carbon nanotube (A-CNT) structure is composed of arrays of individual CNTs grown vertically on a flat substrate. The overall structure and properties of an A-CNTs are highly dependent upon the designs of various architectures and geometric parameters. In Part 2, we have presented the detailed designs and modeling of various aligned carbon nanotube structures. It is found the A-CNT structures generally have much lower modulus than an individual CNT. The reason is due to the high porosity and low density of the A-CNT structures, since the interstitial space between nanotubes is mostly occupied by air. Increasing the nanotube… More >

  • Open Access

    ARTICLE

    Stress Field Effects on Phonon Properties in Spatially Confined Semiconductor Nanostructures

    L.L. Zhu1,2,3, X.J. Zheng1,2

    CMC-Computers, Materials & Continua, Vol.18, No.3, pp. 301-320, 2010, DOI:10.3970/cmc.2010.018.301

    Abstract The phonon properties of spatially confined nanofilms under the preexisting stress fields are investigated theoretically by accounting for the confinement effects and acoustoelastic effects. Due to the spatial confinement in low-dimensional structures, the phonon dispersion relations, phonon group velocities as well as the phonon density of states are of significant difference with the ones in bulk structures. Here, the continuum elasticity theory is made use of to determine the phonon dispersion relations of shear modes (SH), dilatational modes (SA) and the flexural modes (AS), thus to analyze the contribution of stress fields on the phonon performance of confined nanofilms. Our… More >

  • Open Access

    ARTICLE

    EBSD-Based Microscopy: Resolution of Dislocation Density

    Brent L. Adams, Joshua Kacher

    CMC-Computers, Materials & Continua, Vol.14, No.3, pp. 185-196, 2009, DOI:10.3970/cmc.2009.014.185

    Abstract Consideration is given to the resolution of dislocation density afforded by EBSD-based scanning electron microscopy. Comparison between the conventional Hough- and the emerging high-resolution cross-correlation-based approaches is made. It is illustrated that considerable care must be exercised in selecting a step size (Burger's circuit size) for experimental measurements. Important variables affecting this selection include the dislocation density and the physical size and density of dislocation dipole and multi-pole components of the structure. It is also illustrated that simulations can be useful to the interpretation of experimental recoveries. More >

Displaying 131-140 on page 14 of 138. Per Page