Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access

    ARTICLE

    A Firefly Algorithm-Optimized CNN–BiLSTM Model for Automated Detection of Bone Cancer and Marrow Cell Abnormalities

    Ishaani Priyadarshini*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072343 - 12 January 2026

    Abstract Early and accurate detection of bone cancer and marrow cell abnormalities is critical for timely intervention and improved patient outcomes. This paper proposes a novel hybrid deep learning framework that integrates a Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory (BiLSTM) architecture, optimized using the Firefly Optimization algorithm (FO). The proposed CNN-BiLSTM-FO model is tailored for structured biomedical data, capturing both local patterns and sequential dependencies in diagnostic features, while the Firefly Algorithm fine-tunes key hyperparameters to maximize predictive performance. The approach is evaluated on two benchmark biomedical datasets: one comprising diagnostic data… More >

  • Open Access

    ARTICLE

    A Synthetic Speech Detection Model Combining Local-Global Dependency

    Jiahui Song, Yuepeng Zhang, Wenhao Yuan*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.069918 - 10 November 2025

    Abstract Synthetic speech detection is an essential task in the field of voice security, aimed at identifying deceptive voice attacks generated by text-to-speech (TTS) systems or voice conversion (VC) systems. In this paper, we propose a synthetic speech detection model called TFTransformer, which integrates both local and global features to enhance detection capabilities by effectively modeling local and global dependencies. Structurally, the model is divided into two main components: a front-end and a back-end. The front-end of the model uses a combination of SincLayer and two-dimensional (2D) convolution to extract high-level feature maps (HFM) containing local… More >

  • Open Access

    ARTICLE

    The Relationship between Mobile Phone Dependency and Academic Burnout in Middle and High School Students

    Miao Wang1, Menglin Zhao1, Dangyang Ma1, Xinyu Ji1, Donghe Li2, Zhansheng Xu1,3,4,*

    International Journal of Mental Health Promotion, Vol.27, No.8, pp. 1165-1180, 2025, DOI:10.32604/ijmhp.2025.067133 - 29 August 2025

    Abstract Background: With the proliferation of smartphones, adolescent mobile phone dependency has intensified, potentially precipitating academic burnout and other adverse outcomes among students. Contemporary study mostly examines college populations, resulting in a lack of exploration on the internal mechanisms connecting mobile phone dependency to academic burnout. In addition to analysing the chain-mediated effects of sleep quality and cognitive flexibility, this study sought to provide theoretical insights for prevention by applying the Conservation of Resources theory to examine the relationship between academic burnout and mobile phone dependency among middle and high school students. Methods: A cluster convenience… More >

  • Open Access

    ARTICLE

    Evaluating Method of Lower Limb Coordination Based on Spatial-Temporal Dependency Networks

    Xuelin Qin1, Huinan Sang2, Shihua Wu2, Shishu Chen2, Zhiwei Chen2, Yongjun Ren2,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1959-1980, 2025, DOI:10.32604/cmc.2025.066266 - 29 August 2025

    Abstract As an essential tool for quantitative analysis of lower limb coordination, optical motion capture systems with marker-based encoding still suffer from inefficiency, high costs, spatial constraints, and the requirement for multiple markers. While 3D pose estimation algorithms combined with ordinary cameras offer an alternative, their accuracy often deteriorates under significant body occlusion. To address the challenge of insufficient 3D pose estimation precision in occluded scenarios—which hinders the quantitative analysis of athletes’ lower-limb coordination—this paper proposes a multimodal training framework integrating spatiotemporal dependency networks with text-semantic guidance. Compared to traditional optical motion capture systems, this work… More >

  • Open Access

    ARTICLE

    Two-Phase Software Fault Localization Based on Relational Graph Convolutional Neural Networks

    Xin Fan1,2, Zhenlei Fu1,2,*, Jian Shu1,2, Zuxiong Shen1,2, Yun Ge1,2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2583-2607, 2025, DOI:10.32604/cmc.2024.057695 - 17 February 2025

    Abstract Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of… More >

  • Open Access

    ARTICLE

    Design and Economic Evaluation of Grid-Connected PV Water Pumping Systems for Various Head Locations

    Moien A. Omar*

    Energy Engineering, Vol.122, No.2, pp. 561-576, 2025, DOI:10.32604/ee.2025.059352 - 31 January 2025

    Abstract This research investigates the design and optimization of a photovoltaic (PV) water pumping system to address seasonal water demands across five locations with varying elevation heads. The system draws water from a deep well with a static water level of 30 m and a dynamic level of 50 m, serving agricultural and livestock needs. The objective of this study is to accurately size a PV system that balances energy generation and demand while minimizing grid dependency. Meanwhile, the study presents a comprehensive methodology to calculate flow rates, pumping power, daily energy consumption, and system capacity.… More >

  • Open Access

    ARTICLE

    Graph Convolutional Networks Embedding Textual Structure Information for Relation Extraction

    Chuyuan Wei*, Jinzhe Li, Zhiyuan Wang, Shanshan Wan, Maozu Guo

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3299-3314, 2024, DOI:10.32604/cmc.2024.047811 - 15 May 2024

    Abstract Deep neural network-based relational extraction research has made significant progress in recent years, and it provides data support for many natural language processing downstream tasks such as building knowledge graph, sentiment analysis and question-answering systems. However, previous studies ignored much unused structural information in sentences that could enhance the performance of the relation extraction task. Moreover, most existing dependency-based models utilize self-attention to distinguish the importance of context, which hardly deals with multiple-structure information. To efficiently leverage multiple structure information, this paper proposes a dynamic structure attention mechanism model based on textual structure information, which deeply… More >

  • Open Access

    ARTICLE

    Aspect-Level Sentiment Analysis Based on Deep Learning

    Mengqi Zhang1, Jiazhao Chai2, Jianxiang Cao3, Jialing Ji3, Tong Yi4,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3743-3762, 2024, DOI:10.32604/cmc.2024.048486 - 26 March 2024

    Abstract In recent years, deep learning methods have developed rapidly and found application in many fields, including natural language processing. In the field of aspect-level sentiment analysis, deep learning methods can also greatly improve the performance of models. However, previous studies did not take into account the relationship between user feature extraction and contextual terms. To address this issue, we use data feature extraction and deep learning combined to develop an aspect-level sentiment analysis method. To be specific, we design user comment feature extraction (UCFE) to distill salient features from users’ historical comments and transform them More >

  • Open Access

    ARTICLE

    IndRT-GCNets: Knowledge Reasoning with Independent Recurrent Temporal Graph Convolutional Representations

    Yajing Ma1,2,3, Gulila Altenbek1,2,3,*, Yingxia Yu1

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 695-712, 2024, DOI:10.32604/cmc.2023.045486 - 30 January 2024

    Abstract Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events, we propose an Independent Recurrent Temporal Graph Convolution Networks (IndRT-GCNets) framework to efficiently and accurately capture event attribute information. The framework models the knowledge graph sequences to learn the evolutionary representations of entities and relations within each period. Firstly, by utilizing the temporal graph convolution module in the evolutionary representation unit, the framework captures the structural dependency relationships within the knowledge graph in each period. Meanwhile, to achieve better event… More >

  • Open Access

    ARTICLE

    Deoxynortryptoquivaline: A unique antiprostate cancer agent

    YOHKO YAMAZAKI1,*, MANABU KAWADA2, ISAO MOMOSE1

    Oncology Research, Vol.31, No.6, pp. 845-853, 2023, DOI:10.32604/or.2023.030266 - 15 September 2023

    Abstract The androgen receptor (AR) is a critical target in all the clinical stages of prostate cancer. To identify a new AR inhibitor, we constructed a new screening system using the androgen-dependent growth of prostate cancer cell lines as a screening indicator. We screened 50,000 culture broths of microorganisms using this screening system and found that the fermentation broth produced by a fungus inhibited androgen-dependent growth of human prostate cancer LNCaP cells without cytotoxicity. Purification of this culture medium was performed, and this resulted in deoxynortryptoquivaline (DNT) being identified as a novel inhibitor of AR function. More > Graphic Abstract

    Deoxynortryptoquivaline: A unique antiprostate cancer agent

Displaying 1-10 on page 1 of 36. Per Page