Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (51)
  • Open Access

    ARTICLE

    Enhanced Metaheuristics with Machine Learning Enabled Cyberattack Detection Model

    Ahmed S. Almasoud*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2849-2863, 2023, DOI:10.32604/iasc.2023.039718 - 11 September 2023

    Abstract The Internet of Things (IoT) is considered the next-gen connection network and is ubiquitous since it is based on the Internet. Intrusion Detection System (IDS) determines the intrusion performance of terminal equipment and IoT communication procedures from IoT environments after taking equivalent defence measures based on the identified behaviour. In this background, the current study develops an Enhanced Metaheuristics with Machine Learning enabled Cyberattack Detection and Classification (EMML-CADC) model in an IoT environment. The aim of the presented EMML-CADC model is to detect cyberattacks in IoT environments with enhanced efficiency. To attain this, the EMML-CADC… More >

  • Open Access

    ARTICLE

    Visualization for Explanation of Deep Learning-Based Defect Detection Model Using Class Activation Map

    Hyunkyu Shin1, Yonghan Ahn2, Mihwa Song3, Heungbae Gil3, Jungsik Choi4,*, Sanghyo Lee5,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4753-4766, 2023, DOI:10.32604/cmc.2023.038362 - 29 April 2023

    Abstract Recently, convolutional neural network (CNN)-based visual inspection has been developed to detect defects on building surfaces automatically. The CNN model demonstrates remarkable accuracy in image data analysis; however, the predicted results have uncertainty in providing accurate information to users because of the “black box” problem in the deep learning model. Therefore, this study proposes a visual explanation method to overcome the uncertainty limitation of CNN-based defect identification. The visual representative gradient-weights class activation mapping (Grad-CAM) method is adopted to provide visually explainable information. A visualizing evaluation index is proposed to quantitatively analyze visual representations; this… More >

  • Open Access

    ARTICLE

    Intelligent Deep Convolutional Neural Network Based Object Detection Model for Visually Challenged People

    S. Kiruthika Devi1, Amani Abdulrahman Albraikan2, Fahd N. Al-Wesabi3, Mohamed K. Nour4, Ahmed Ashour5, Anwer Mustafa Hilal6,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3191-3207, 2023, DOI:10.32604/csse.2023.036980 - 03 April 2023

    Abstract Artificial Intelligence (AI) and Computer Vision (CV) advancements have led to many useful methodologies in recent years, particularly to help visually-challenged people. Object detection includes a variety of challenges, for example, handling multiple class images, images that get augmented when captured by a camera and so on. The test images include all these variants as well. These detection models alert them about their surroundings when they want to walk independently. This study compares four CNN-based pre-trained models: Residual Network (ResNet-50), Inception v3, Dense Convolutional Network (DenseNet-121), and SqueezeNet, predominantly used in image recognition applications. Based… More >

  • Open Access

    ARTICLE

    A COVID-19 Detection Model Based on Convolutional Neural Network and Residual Learning

    Bo Wang1,*, Yongxin Zhang1, Shihui Ji2, Binbin Zhang1, Xiangyu Wang1, Jiyong Zhang1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3625-3642, 2023, DOI:10.32604/cmc.2023.036754 - 31 March 2023

    Abstract A model that can obtain rapid and accurate detection of coronavirus disease 2019 (COVID-19) plays a significant role in treating and preventing the spread of disease transmission. However, designing such a model that can balance the detection accuracy and weight parameters of memory well to deploy a mobile device is challenging. Taking this point into account, this paper fuses the convolutional neural network and residual learning operations to build a multi-class classification model, which improves COVID-19 pneumonia detection performance and keeps a trade-off between the weight parameters and accuracy. The convolutional neural network can extract… More >

  • Open Access

    ARTICLE

    Network Intrusion Detection Model Using Fused Machine Learning Technique

    Fahad Mazaed Alotaibi*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2479-2490, 2023, DOI:10.32604/cmc.2023.033792 - 31 March 2023

    Abstract With the progress of advanced technology in the industrial revolution encompassing the Internet of Things (IoT) and cloud computing, cyberattacks have been increasing rapidly on a large scale. The rapid expansion of IoT and networks in many forms generates massive volumes of data, which are vulnerable to security risks. As a result, cyberattacks have become a prevalent and danger to society, including its infrastructures, economy, and citizens’ privacy, and pose a national security risk worldwide. Therefore, cyber security has become an increasingly important issue across all levels and sectors. Continuous progress is being made in More >

  • Open Access

    ARTICLE

    Modified Buffalo Optimization with Big Data Analytics Assisted Intrusion Detection Model

    R. Sheeba1,*, R. Sharmila2, Ahmed Alkhayyat3, Rami Q. Malik4

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1415-1429, 2023, DOI:10.32604/csse.2023.034321 - 09 February 2023

    Abstract Lately, the Internet of Things (IoT) application requires millions of structured and unstructured data since it has numerous problems, such as data organization, production, and capturing. To address these shortcomings, big data analytics is the most superior technology that has to be adapted. Even though big data and IoT could make human life more convenient, those benefits come at the expense of security. To manage these kinds of threats, the intrusion detection system has been extensively applied to identify malicious network traffic, particularly once the preventive technique fails at the level of endpoint IoT devices.… More >

  • Open Access

    ARTICLE

    Hybrid Metaheuristics Feature Selection with Stacked Deep Learning-Enabled Cyber-Attack Detection Model

    Mashael M Asiri1, Heba G. Mohamed2, Mohamed K Nour3, Mesfer Al Duhayyim4,*, Amira Sayed A. Aziz5, Abdelwahed Motwakel6, Abu Sarwar Zamani6, Mohamed I. Eldesouki7

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1679-1694, 2023, DOI:10.32604/csse.2023.031063 - 03 November 2022

    Abstract Due to exponential increase in smart resource limited devices and high speed communication technologies, Internet of Things (IoT) have received significant attention in different application areas. However, IoT environment is highly susceptible to cyber-attacks because of memory, processing, and communication restrictions. Since traditional models are not adequate for accomplishing security in the IoT environment, the recent developments of deep learning (DL) models find beneficial. This study introduces novel hybrid metaheuristics feature selection with stacked deep learning enabled cyber-attack detection (HMFS-SDLCAD) model. The major intention of the HMFS-SDLCAD model is to recognize the occurrence of cyberattacks… More >

  • Open Access

    ARTICLE

    Improved Ant Colony Optimization and Machine Learning Based Ensemble Intrusion Detection Model

    S. Vanitha1,*, P. Balasubramanie2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 849-864, 2023, DOI:10.32604/iasc.2023.032324 - 29 September 2022

    Abstract Internet of things (IOT) possess cultural, commercial and social effect in life in the future. The nodes which are participating in IOT network are basically attracted by the cyber-attack targets. Attack and identification of anomalies in IoT infrastructure is a growing problem in the IoT domain. Machine Learning Based Ensemble Intrusion Detection (MLEID) method is applied in order to resolve the drawback by minimizing malicious actions in related botnet attacks on Message Queue Telemetry Transport (MQTT) and Hyper-Text Transfer Protocol (HTTP) protocols. The proposed work has two significant contributions which are a selection of features… More >

  • Open Access

    ARTICLE

    A Construction of Object Detection Model for Acute Myeloid Leukemia

    K. Venkatesh1,*, S. Pasupathy1, S. P. Raja2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 543-560, 2023, DOI:10.32604/iasc.2023.030701 - 29 September 2022

    Abstract The evolution of bone marrow morphology is necessary in Acute Myeloid Leukemia (AML) prediction. It takes an enormous number of times to analyze with the standardization and inter-observer variability. Here, we proposed a novel AML detection model using a Deep Convolutional Neural Network (D-CNN). The proposed Faster R-CNN (Faster Region-Based CNN) models are trained with Morphological Dataset. The proposed Faster R-CNN model is trained using the augmented dataset. For overcoming the Imbalanced Data problem, data augmentation techniques are imposed. The Faster R-CNN performance was compared with existing transfer learning techniques. The results show that the More >

  • Open Access

    ARTICLE

    Computer Vision and Deep Learning-enabled Weed Detection Model for Precision Agriculture

    R. Punithavathi1, A. Delphin Carolina Rani2, K. R. Sughashini3, Chinnarao Kurangi4, M. Nirmala5, Hasmath Farhana Thariq Ahmed6, S. P. Balamurugan7,*

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2759-2774, 2023, DOI:10.32604/csse.2023.027647 - 01 August 2022

    Abstract Presently, precision agriculture processes like plant disease, crop yield prediction, species recognition, weed detection, and irrigation can be accomplished by the use of computer vision (CV) approaches. Weed plays a vital role in influencing crop productivity. The wastage and pollution of farmland's natural atmosphere instigated by full coverage chemical herbicide spraying are increased. Since the proper identification of weeds from crops helps to reduce the usage of herbicide and improve productivity, this study presents a novel computer vision and deep learning based weed detection and classification (CVDL-WDC) model for precision agriculture. The proposed CVDL-WDC technique More >

Displaying 21-30 on page 3 of 51. Per Page