Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (61)
  • Open Access

    ARTICLE

    A Synthetic Speech Detection Model Combining Local-Global Dependency

    Jiahui Song, Yuepeng Zhang, Wenhao Yuan*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.069918 - 10 November 2025

    Abstract Synthetic speech detection is an essential task in the field of voice security, aimed at identifying deceptive voice attacks generated by text-to-speech (TTS) systems or voice conversion (VC) systems. In this paper, we propose a synthetic speech detection model called TFTransformer, which integrates both local and global features to enhance detection capabilities by effectively modeling local and global dependencies. Structurally, the model is divided into two main components: a front-end and a back-end. The front-end of the model uses a combination of SincLayer and two-dimensional (2D) convolution to extract high-level feature maps (HFM) containing local… More >

  • Open Access

    ARTICLE

    An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning

    Kemahyanto Exaudi1,2, Deris Stiawan3,*, Bhakti Yudho Suprapto1, Hanif Fakhrurroja4, Mohd. Yazid Idris5, Tami A. Alghamdi6, Rahmat Budiarto6

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.069377 - 10 November 2025

    Abstract Sudden wildfires cause significant global ecological damage. While satellite imagery has advanced early fire detection and mitigation, image-based systems face limitations including high false alarm rates, visual obstructions, and substantial computational demands, especially in complex forest terrains. To address these challenges, this study proposes a novel forest fire detection model utilizing audio classification and machine learning. We developed an audio-based pipeline using real-world environmental sound recordings. Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network (CNN), enabling the capture of distinctive fire acoustic signatures (e.g., crackling, roaring) that are minimally impacted by… More >

  • Open Access

    ARTICLE

    A YOLOv11 Empowered Road Defect Detection Model

    Xubo Liu1, Yunxiang Liu2, Peng Luo2,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1073-1094, 2025, DOI:10.32604/cmc.2025.066078 - 29 August 2025

    Abstract Roads inevitably have defects during use, which not only seriously affect their service life but also pose a hidden danger to traffic safety. Existing algorithms for detecting road defects are unsatisfactory in terms of accuracy and generalization, so this paper proposes an algorithm based on YOLOv11. The method embeds wavelet transform convolution (WTConv) into the backbone’s C3k2 module to enhance low-frequency feature extraction while avoiding parameter bloat. Secondly, a novel multi-scale fusion diffusion network (MFDN) architecture is designed for the neck to strengthen cross-scale feature interactions, boosting detection precision. In terms of model optimization, the… More >

  • Open Access

    ARTICLE

    Intrusion Detection Model on Network Data with Deep Adaptive Multi-Layer Attention Network (DAMLAN)

    Fatma S. Alrayes1, Syed Umar Amin2,*, Nada Ali Hakami2, Mohammed K. Alzaylaee3, Tariq Kashmeery4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 581-614, 2025, DOI:10.32604/cmes.2025.065188 - 31 July 2025

    Abstract The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems (IDS) for enhanced network security. While conventional IDSs can be unsuitable for detecting different and emerging attacks, there is a demand for better techniques to improve detection reliability. This study introduces a new method, the Deep Adaptive Multi-Layer Attention Network (DAMLAN), to boost the result of intrusion detection on network data. Due to its multi-scale attention mechanisms and graph features, DAMLAN aims to address both known and unknown intrusions. The real-world NSL-KDD dataset, a popular choice among IDS researchers, is used to… More >

  • Open Access

    ARTICLE

    An Improved YOLO-Based Waste Detection Model and Its Integration to Robotic Gripping Systems

    Anjie Wang1,2, Haining Jiao1,2,*, Zhichao Chen1,2,*, Jie Yang1,2

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5773-5790, 2025, DOI:10.32604/cmc.2025.066852 - 30 July 2025

    Abstract With the rapid development of the Internet of Things (IoT), artificial intelligence, and big data, waste-sorting systems must balance high accuracy, low latency, and resource efficiency. This paper presents an edge-friendly intelligent waste-sorting system that integrates a lightweight visual neural network, a pentagonal-trajectory robotic arm, and IoT connectivity to meet the requirements of real-time response and high accuracy. A lightweight object detection model, YOLO-WasNet (You Only Look Once for Waste Sorting Network), is proposed to optimize performance on edge devices. YOLO-WasNet adopts a lightweight backbone, applies Spatial Pyramid Pooling-Fast (SPPF) and Convolutional Block Attention Module… More >

  • Open Access

    ARTICLE

    An Ochotona Curzoniae Object Detection Model Based on Feature Fusion with SCConv Attention Mechanism

    Haiyan Chen*, Rong Li

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5693-5712, 2025, DOI:10.32604/cmc.2025.065339 - 30 July 2025

    Abstract The detection of Ochotona Curzoniae serves as a fundamental component for estimating the population size of this species and for analyzing the dynamics of its population fluctuations. In natural environments, the pixels representing Ochotona Curzoniae constitute a small fraction of the total pixels, and their distinguishing features are often subtle, complicating the target detection process. To effectively extract the characteristics of these small targets, a feature fusion approach that utilizes up-sampling and channel integration from various layers within a CNN can significantly enhance the representation of target features, ultimately improving detection accuracy. However, the top-down… More >

  • Open Access

    ARTICLE

    Three-Level Intrusion Detection Model for Wireless Sensor Networks Based on Dynamic Trust Evaluation

    Xiaogang Yuan*, Huan Pei, Yanlin Wu

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5555-5575, 2025, DOI:10.32604/cmc.2025.063537 - 30 July 2025

    Abstract In the complex environment of Wireless Sensor Networks (WSNs), various malicious attacks have emerged, among which internal attacks pose particularly severe security risks. These attacks seriously threaten network stability, data transmission reliability, and overall performance. To effectively address this issue and significantly improve intrusion detection speed, accuracy, and resistance to malicious attacks, this research designs a Three-level Intrusion Detection Model based on Dynamic Trust Evaluation (TIDM-DTE). This study conducts a detailed analysis of how different attack types impact node trust and establishes node models for data trust, communication trust, and energy consumption trust by focusing… More >

  • Open Access

    ARTICLE

    YOLO-LE: A Lightweight and Efficient UAV Aerial Image Target Detection Model

    Zhe Chen*, Yinyang Zhang, Sihao Xing

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1787-1803, 2025, DOI:10.32604/cmc.2025.065238 - 09 June 2025

    Abstract Unmanned aerial vehicle (UAV) imagery poses significant challenges for object detection due to extreme scale variations, high-density small targets (68% in VisDrone dataset), and complex backgrounds. While YOLO-series models achieve speed-accuracy trade-offs via fixed convolution kernels and manual feature fusion, their rigid architectures struggle with multi-scale adaptability, as exemplified by YOLOv8n’s 36.4% mAP and 13.9% small-object AP on VisDrone2019. This paper presents YOLO-LE, a lightweight framework addressing these limitations through three novel designs: (1) We introduce the C2f-Dy and LDown modules to enhance the backbone’s sensitivity to small-object features while reducing backbone parameters, thereby improving More >

  • Open Access

    ARTICLE

    Metaheuristic-Driven Abnormal Traffic Detection Model for SDN Based on Improved Tyrannosaurus Optimization Algorithm

    Hui Xu, Jiahui Chen*, Zhonghao Hu

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4495-4513, 2025, DOI:10.32604/cmc.2025.062189 - 19 May 2025

    Abstract Nowadays, abnormal traffic detection for Software-Defined Networking (SDN) faces the challenges of large data volume and high dimensionality. Since traditional machine learning-based detection methods have the problem of data redundancy, the Metaheuristic Algorithm (MA) is introduced to select features before machine learning to reduce the dimensionality of data. Since a Tyrannosaurus Optimization Algorithm (TROA) has the advantages of few parameters, simple implementation, and fast convergence, and it shows better results in feature selection, TROA can be applied to abnormal traffic detection for SDN. However, TROA suffers from insufficient global search capability, is easily trapped in… More >

  • Open Access

    ARTICLE

    Evaluation and Benchmarking of Cybersecurity DDoS Attacks Detection Models through the Integration of FWZIC and MABAC Methods

    Alaa Mahmood, İsa Avcı*

    Computer Systems Science and Engineering, Vol.49, pp. 401-417, 2025, DOI:10.32604/csse.2025.062413 - 25 April 2025

    Abstract A Distributed Denial-of-Service (DDoS) attack poses a significant challenge in the digital age, disrupting online services with operational and financial consequences. Detecting such attacks requires innovative and effective solutions. The primary challenge lies in selecting the best among several DDoS detection models. This study presents a framework that combines several DDoS detection models and Multiple-Criteria Decision-Making (MCDM) techniques to compare and select the most effective models. The framework integrates a decision matrix from training several models on the CiC-DDOS2019 dataset with Fuzzy Weighted Zero Inconsistency Criterion (FWZIC) and Multi-Attribute Boundary Approximation Area Comparison (MABAC) methodologies.… More >

Displaying 1-10 on page 1 of 61. Per Page