Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    Anomaly-Based Intrusion Detection Model Using Deep Learning for IoT Networks

    Muaadh A. Alsoufi1,*, Maheyzah Md Siraj1, Fuad A. Ghaleb2, Muna Al-Razgan3, Mahfoudh Saeed Al-Asaly3, Taha Alfakih3, Faisal Saeed2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 823-845, 2024, DOI:10.32604/cmes.2024.052112

    Abstract The rapid growth of Internet of Things (IoT) devices has brought numerous benefits to the interconnected world. However, the ubiquitous nature of IoT networks exposes them to various security threats, including anomaly intrusion attacks. In addition, IoT devices generate a high volume of unstructured data. Traditional intrusion detection systems often struggle to cope with the unique characteristics of IoT networks, such as resource constraints and heterogeneous data sources. Given the unpredictable nature of network technologies and diverse intrusion methods, conventional machine-learning approaches seem to lack efficiency. Across numerous research domains, deep learning techniques have demonstrated… More >

  • Open Access

    ARTICLE

    IGED: Towards Intelligent DDoS Detection Model Using Improved Generalized Entropy and DNN

    Yanhua Liu1,2,3, Yuting Han1,2,3, Hui Chen1,2,3, Baokang Zhao4,*, Xiaofeng Wang4, Ximeng Liu1,2,3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1851-1866, 2024, DOI:10.32604/cmc.2024.051194

    Abstract As the scale of the networks continually expands, the detection of distributed denial of service (DDoS) attacks has become increasingly vital. We propose an intelligent detection model named IGED by using improved generalized entropy and deep neural network (DNN). The initial detection is based on improved generalized entropy to filter out as much normal traffic as possible, thereby reducing data volume. Then the fine detection is based on DNN to perform precise DDoS detection on the filtered suspicious traffic, enhancing the neural network’s generalization capabilities. Experimental results show that the proposed method can efficiently distinguish More >

  • Open Access

    ARTICLE

    A Power Data Anomaly Detection Model Based on Deep Learning with Adaptive Feature Fusion

    Xiu Liu, Liang Gu*, Xin Gong, Long An, Xurui Gao, Juying Wu

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4045-4061, 2024, DOI:10.32604/cmc.2024.048442

    Abstract With the popularisation of intelligent power, power devices have different shapes, numbers and specifications. This means that the power data has distributional variability, the model learning process cannot achieve sufficient extraction of data features, which seriously affects the accuracy and performance of anomaly detection. Therefore, this paper proposes a deep learning-based anomaly detection model for power data, which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction. Aiming at the distribution variability of power data, this paper developed a sliding window-based data adjustment method for… More >

  • Open Access

    ARTICLE

    Digital Text Document Watermarking Based Tampering Attack Detection via Internet

    Manal Abdullah Alohali1, Muna Elsadig1, Fahd N. Al-Wesabi2, Mesfer Al Duhayyim3, Anwer Mustafa Hilal4,*, Abdelwahed Motwakel4

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 759-771, 2024, DOI:10.32604/csse.2023.037305

    Abstract Owing to the rapid increase in the interchange of text information through internet networks, the reliability and security of digital content are becoming a major research problem. Tampering detection, Content authentication, and integrity verification of digital content interchanged through the Internet were utilized to solve a major concern in information and communication technologies. The authors’ difficulties were tampering detection, authentication, and integrity verification of the digital contents. This study develops an Automated Data Mining based Digital Text Document Watermarking for Tampering Attack Detection (ADMDTW-TAD) via the Internet. The DM concept is exploited in the presented… More >

  • Open Access

    ARTICLE

    Fusion of Spiral Convolution-LSTM for Intrusion Detection Modeling

    Fei Wang, Zhen Dong*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2315-2329, 2024, DOI:10.32604/cmc.2024.048443

    Abstract Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models, SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model. The dataset is first preprocessed using solo thermal encoding and normalization functions. Then the spiral convolution-Long Short-Term Memory Network model is constructed, which consists of spiral convolution, a two-layer long short-term memory network, and a classifier. It is shown through experiments that the model is characterized by high accuracy, small model computation, and fast convergence speed relative to previous deep learning models. The model More >

  • Open Access

    ARTICLE

    ResNeSt-biGRU: An Intrusion Detection Model Based on Internet of Things

    Yan Xiang1,2, Daofeng Li1,2,*, Xinyi Meng1,2, Chengfeng Dong1,2, Guanglin Qin1,2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1005-1023, 2024, DOI:10.32604/cmc.2024.047143

    Abstract The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasing demands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device has caught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. This has resulted in a myriad of security challenges, including information leakage, malware propagation, and financial loss, among others. Consequently, developing an intrusion detection system to identify both active and potential intrusion traffic in IoT networks is of paramount importance. In this paper, we propose… More >

  • Open Access

    ARTICLE

    Enhancing ChatGPT’s Querying Capability with Voice-Based Interaction and CNN-Based Impair Vision Detection Model

    Awais Ahmad1, Sohail Jabbar1,*, Sheeraz Akram1, Anand Paul2, Umar Raza3, Nuha Mohammed Alshuqayran1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3129-3150, 2024, DOI:10.32604/cmc.2024.045385

    Abstract This paper presents an innovative approach to enhance the querying capability of ChatGPT, a conversational artificial intelligence model, by incorporating voice-based interaction and a convolutional neural network (CNN)-based impaired vision detection model. The proposed system aims to improve user experience and accessibility by allowing users to interact with ChatGPT using voice commands. Additionally, a CNN-based model is employed to detect impairments in user vision, enabling the system to adapt its responses and provide appropriate assistance. This research tackles head-on the challenges of user experience and inclusivity in artificial intelligence (AI). It underscores our commitment to… More >

  • Open Access

    ARTICLE

    Intrusion Detection Model Using Chaotic MAP for Network Coding Enabled Mobile Small Cells

    Chanumolu Kiran Kumar, Nandhakumar Ramachandran*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3151-3176, 2024, DOI:10.32604/cmc.2023.043534

    Abstract Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions, vulnerabilities, and assaults. Complex security systems, such as Intrusion Detection Systems (IDS), are essential due to the limitations of simpler security measures, such as cryptography and firewalls. Due to their compact nature and low energy reserves, wireless networks present a significant challenge for security procedures. The features of small cells can cause threats to the network. Network Coding (NC) enabled small cells are vulnerable to various types of attacks. Avoiding attacks and performing secure “peer” to “peer” data transmission is… More >

  • Open Access

    ARTICLE

    A Novel Eccentric Intrusion Detection Model Based on Recurrent Neural Networks with Leveraging LSTM

    Navaneetha Krishnan Muthunambu1, Senthil Prabakaran2, Balasubramanian Prabhu Kavin3, Kishore Senthil Siruvangur4, Kavitha Chinnadurai1, Jehad Ali5,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3089-3127, 2024, DOI:10.32604/cmc.2023.043172

    Abstract The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet. Regrettably, this development has expanded the potential targets that hackers might exploit. Without adequate safeguards, data transmitted on the internet is significantly more susceptible to unauthorized access, theft, or alteration. The identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious attacks. This research paper introduces a novel intrusion detection framework that utilizes Recurrent… More >

  • Open Access

    ARTICLE

    A Novel Intrusion Detection Model of Unknown Attacks Using Convolutional Neural Networks

    Abdullah Alsaleh1,2,*

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 431-449, 2024, DOI:10.32604/csse.2023.043107

    Abstract With the increasing number of connected devices in the Internet of Things (IoT) era, the number of intrusions is also increasing. An intrusion detection system (IDS) is a secondary intelligent system for monitoring, detecting and alerting against malicious activity. IDS is important in developing advanced security models. This study reviews the importance of various techniques, tools, and methods used in IoT detection and/or prevention systems. Specifically, it focuses on machine learning (ML) and deep learning (DL) techniques for IDS. This paper proposes an accurate intrusion detection model to detect traditional and new attacks on the… More >

Displaying 1-10 on page 1 of 46. Per Page