Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (191)
  • Open Access

    REVIEW

    Intrusion Detection Systems in Industrial Control Systems: Landscape, Challenges and Opportunities

    Tong Wu, Dawei Zhou, Qingyu Ou*, Fang Luo

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073482 - 12 January 2026

    Abstract The increasing interconnection of modern industrial control systems (ICSs) with the Internet has enhanced operational efficiency, but also made these systems more vulnerable to cyberattacks. This heightened exposure has driven a growing need for robust ICS security measures. Among the key defences, intrusion detection technology is critical in identifying threats to ICS networks. This paper provides an overview of the distinctive characteristics of ICS network security, highlighting standard attack methods. It then examines various intrusion detection methods, including those based on misuse detection, anomaly detection, machine learning, and specialised requirements. This paper concludes by exploring More >

  • Open Access

    ARTICLE

    IoT-Driven Pollution Detection System for Indoor and Outdoor Environments

    Fatima Khan1, Amna Khan1, Tariq Ali2, Tariq Shahzad3, Tehseen Mazhar4,*, Sunawar Khan5, Muhammad Adnan Khan6,*, Habib Hamam7,8,9,10

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-27, 2026, DOI:10.32604/cmc.2025.068228 - 09 December 2025

    Abstract The rise in noise and air pollution poses severe risks to human health and the environment. Industrial and vehicular emissions release harmful pollutants such as CO2, SO2, CO, CH4, and noise, leading to significant environmental degradation. Monitoring and analyzing pollutant concentrations in real-time is crucial for mitigating these risks. However, existing systems often lack the capacity to monitor both indoor and outdoor environments effectively.This study presents a low-cost, IoT-based pollution detection system that integrates gas sensors (MQ-135 and MQ-4), a noise sensor (LM393), and a humidity sensor (DHT-22), all connected to a Node MCU (ESP8266) microcontroller. The… More >

  • Open Access

    ARTICLE

    Towards Decentralized IoT Security: Optimized Detection of Zero-Day Multi-Class Cyber-Attacks Using Deep Federated Learning

    Misbah Anwer1,*, Ghufran Ahmed1, Maha Abdelhaq2, Raed Alsaqour3, Shahid Hussain4, Adnan Akhunzada5,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.068673 - 10 November 2025

    Abstract The exponential growth of the Internet of Things (IoT) has introduced significant security challenges, with zero-day attacks emerging as one of the most critical and challenging threats. Traditional Machine Learning (ML) and Deep Learning (DL) techniques have demonstrated promising early detection capabilities. However, their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints, high computational costs, and the costly time-intensive process of data labeling. To address these challenges, this study proposes a Federated Learning (FL) framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in… More >

  • Open Access

    ARTICLE

    GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT

    Wanwei Huang1,*, Huicong Yu1, Jiawei Ren2, Kun Wang3, Yanbu Guo1, Lifeng Jin4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068493 - 10 November 2025

    Abstract Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity. These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy. This paper proposes an industrial Internet of Things intrusion detection feature selection algorithm based on an improved whale optimization algorithm (GSLDWOA). The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to, such as local optimality, long detection time, and reduced accuracy. First, the initial population’s diversity is increased using the Gaussian Mutation More >

  • Open Access

    ARTICLE

    Cross-Dataset Transformer-IDS with Calibration and AUC Optimization (Evaluated on NSL-KDD, UNSW-NB15, CIC-IDS2017)

    Chaonan Xin*, Keqing Xu

    Journal of Cyber Security, Vol.7, pp. 483-503, 2025, DOI:10.32604/jcs.2025.071627 - 28 November 2025

    Abstract Intrusion Detection Systems (IDS) have achieved high accuracy on benchmark datasets, yet models often fail to generalize across different network environments. In this paper, we propose Transformer-IDS, a transformer-based network intrusion detection model designed for cross-dataset generalization. The model incorporates a classification token, multi-head self-attention, and embedding layers to learn versatile features, and it introduces a calibration module and an AUC-oriented optimization objective to improve reliability and ranking performance. We evaluate Transformer-IDS on three prominent datasets (NSL-KDD, UNSW-NB15, CIC-IDS2017) in both within-dataset and cross-dataset scenarios. Results demonstrate that while conventional deep IDS models (e.g., CNN-LSTM More >

  • Open Access

    ARTICLE

    Enhancing Roaming Security in Cloud-Native 5G Core Network through Deep Learning-Based Intrusion Detection System

    I Wayan Adi Juliawan Pawana1,2, Vincent Abella2, Jhury Kevin Lastre2, Yongho Ko2, Ilsun You2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2733-2760, 2025, DOI:10.32604/cmes.2025.072611 - 26 November 2025

    Abstract Roaming in 5G networks enables seamless global mobility but also introduces significant security risks due to legacy protocol dependencies, uneven Security Edge Protection Proxy (SEPP) deployment, and the dynamic nature of inter-Public Land Mobile Network (inter-PLMN) signaling. Traditional rule-based defenses are inadequate for protecting cloud-native 5G core networks, particularly as roaming expands into enterprise and Internet of Things (IoT) domains. This work addresses these challenges by designing a scalable 5G Standalone testbed, generating the first intrusion detection dataset specifically tailored to roaming threats, and proposing a deep learning based intrusion detection framework for cloud-native environments.… More > Graphic Abstract

    Enhancing Roaming Security in Cloud-Native 5G Core Network through Deep Learning-Based Intrusion Detection System

  • Open Access

    ARTICLE

    Boosting Cybersecurity: A Zero-Day Attack Detection Approach Using Equilibrium Optimiser with Deep Learning Model

    Mona Almofarreh1, Amnah Alshahrani2, Nouf Helal Alharbi3, Ahmed Omer Ahmed4, Hussain Alshahrani5, Abdulrahman Alzahrani6,*, Mohammed Mujib Alshahrani7, Asma A. Alhashmi8

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2631-2656, 2025, DOI:10.32604/cmes.2025.070545 - 26 November 2025

    Abstract Zero-day attacks use unknown vulnerabilities that prevent being identified by cybersecurity detection tools. This study indicates that zero-day attacks have a significant impact on computer security. A conventional signature-based detection algorithm is not efficient at recognizing zero-day attacks, as the signatures of zero-day attacks are usually not previously accessible. A machine learning (ML)-based detection algorithm is proficient in capturing statistical features of attacks and, therefore, optimistic for zero-day attack detection. ML and deep learning (DL) are employed for designing intrusion detection systems. The improvement of absolute varieties of novel cyberattacks poses significant challenges for IDS… More >

  • Open Access

    ARTICLE

    GWO-LightGBM: A Hybrid Grey Wolf Optimized Light Gradient Boosting Model for Cyber-Physical System Security

    Adeel Munawar1, Muhammad Nadeem Ali2, Awais Qasim3, Byung-Seo Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1189-1211, 2025, DOI:10.32604/cmes.2025.071876 - 30 October 2025

    Abstract Cyber-physical systems (CPS) represent a sophisticated integration of computational and physical components that power critical applications such as smart manufacturing, healthcare, and autonomous infrastructure. However, their extensive reliance on internet connectivity makes them increasingly susceptible to cyber threats, potentially leading to operational failures and data breaches. Furthermore, CPS faces significant threats related to unauthorized access, improper management, and tampering of the content it generates. In this paper, we propose an intrusion detection system (IDS) optimized for CPS environments using a hybrid approach by combining a nature-inspired feature selection scheme, such as Grey Wolf Optimization (GWO),… More >

  • Open Access

    ARTICLE

    Efficient Malicious QR Code Detection System Using an Advanced Deep Learning Approach

    Abdulaziz A. Alsulami1, Qasem Abu Al-Haija2,*, Badraddin Alturki3, Ayman Yafoz1, Ali Alqahtani4, Raed Alsini1, Sami Saeed Binyamin5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1117-1140, 2025, DOI:10.32604/cmes.2025.070745 - 30 October 2025

    Abstract QR codes are widely used in applications such as information sharing, advertising, and digital payments. However, their growing adoption has made them attractive targets for malicious activities, including malware distribution and phishing attacks. Traditional detection approaches rely on URL analysis or image-based feature extraction, which may introduce significant computational overhead and limit real-time applicability, and their performance often depends on the quality of extracted features. Previous studies in malicious detection do not fully focus on QR code security when combining convolutional neural networks (CNNs) with recurrent neural networks (RNNs). This research proposes a deep learning… More >

  • Open Access

    ARTICLE

    A Genetic Algorithm-Based Double Auction Framework for Secure and Scalable Resource Allocation in Cloud-Integrated Intrusion Detection Systems

    Siraj Un Muneer1, Ihsan Ullah1, Zeshan Iqbal2,*, Rajermani Thinakaran3

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4959-4975, 2025, DOI:10.32604/cmc.2025.068566 - 23 October 2025

    Abstract The complexity of cloud environments challenges secure resource management, especially for intrusion detection systems (IDS). Existing strategies struggle to balance efficiency, cost fairness, and threat resilience. This paper proposes an innovative approach to managing cloud resources through the integration of a genetic algorithm (GA) with a “double auction” method. This approach seeks to enhance security and efficiency by aligning buyers and sellers within an intelligent market framework. It guarantees equitable pricing while utilizing resources efficiently and optimizing advantages for all stakeholders. The GA functions as an intelligent search mechanism that identifies optimal combinations of bids More >

Displaying 1-10 on page 1 of 191. Per Page