Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access


    CAW-YOLO: Cross-Layer Fusion and Weighted Receptive Field-Based YOLO for Small Object Detection in Remote Sensing

    Weiya Shi1,*, Shaowen Zhang2, Shiqiang Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3209-3231, 2024, DOI:10.32604/cmes.2023.044863

    Abstract In recent years, there has been extensive research on object detection methods applied to optical remote sensing images utilizing convolutional neural networks. Despite these efforts, the detection of small objects in remote sensing remains a formidable challenge. The deep network structure will bring about the loss of object features, resulting in the loss of object features and the near elimination of some subtle features associated with small objects in deep layers. Additionally, the features of small objects are susceptible to interference from background features contained within the image, leading to a decline in detection accuracy.… More >

  • Open Access


    Hybrid Watermarking and Encryption Techniques for Securing Medical Images

    Amel Ali Alhussan1,*, Hanaa A. Abdallah2, Sara Alsodairi2, Abdelhamied A. Ateya3

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 403-416, 2023, DOI:10.32604/csse.2023.035048

    Abstract Securing medical data while transmission on the network is required because it is sensitive and life-dependent data. Many methods are used for protection, such as Steganography, Digital Signature, Cryptography, and Watermarking. This paper introduces a novel robust algorithm that combines discrete wavelet transform (DWT), discrete cosine transform (DCT), and singular value decomposition (SVD) digital image-watermarking algorithms. The host image is decomposed using a two-dimensional DWT (2D-DWT) to approximate low-frequency sub-bands in the embedding process. Then the sub-band low-high (LH) is decomposed using 2D-DWT to four new sub-bands. The resulting sub-band low-high (LH1) is decomposed using 2D-DWT… More >

  • Open Access


    ELM-Based Shape Adaptive DCT Compression Technique for Underwater Image Compression

    M. Jamuna Rani1,*, C. Vasanthanayaki2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1953-1970, 2023, DOI:10.32604/csse.2023.028713

    Abstract Underwater imagery and transmission possess numerous challenges like lower signal bandwidth, slower data transmission bit rates, Noise, underwater blue/green light haze etc. These factors distort the estimation of Region of Interest and are prime hurdles in deploying efficient compression techniques. Due to the presence of blue/green light in underwater imagery, shape adaptive or block-wise compression techniques faces failures as it becomes very difficult to estimate the compression levels/coefficients for a particular region. This method is proposed to efficiently deploy an Extreme Learning Machine (ELM) model-based shape adaptive Discrete Cosine Transformation (DCT) for underwater images. Underwater More >

  • Open Access


    Securing Copyright Using 3D Objects Blind Watermarking Scheme

    Hussein Abulkasim1,*, Mona Jamjoom2, Safia Abbas2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5969-5983, 2022, DOI:10.32604/cmc.2022.027999

    Abstract Recently, securing Copyright has become a hot research topic due to rapidly advancing information technology. As a host cover, watermarking methods are used to conceal or embed sensitive information messages in such a manner that it was undetectable to a human observer in contemporary times. Digital media covers may often take any form, including audio, video, photos, even DNA data sequences. In this work, we present a new methodology for watermarking to hide secret data into 3-D objects. The technique of blind extraction based on reversing the steps of the data embedding process is used.… More >

  • Open Access


    Hybrid Machine Learning Model for Face Recognition Using SVM

    Anil Kumar Yadav1, R. K. Pateriya2, Nirmal Kumar Gupta3, Punit Gupta4,*, Dinesh Kumar Saini4, Mohammad Alahmadi5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2697-2712, 2022, DOI:10.32604/cmc.2022.023052

    Abstract Face recognition systems have enhanced human-computer interactions in the last ten years. However, the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations. Principal Component Analysis-Support Vector Machine (PCA-SVM) and Principal Component Analysis-Artificial Neural Network (PCA-ANN) are among the relatively recent and powerful face analysis techniques. Compared to PCA-ANN, PCA-SVM has demonstrated generalization capabilities in many tasks, including the ability to recognize objects with small or large data samples. Apart from requiring a minimal number of parameters in face detection, PCA-SVM minimizes generalization errors and avoids overfitting problems More >

  • Open Access


    Efficient Data Compression of ECG Signal Based on Modified Discrete Cosine Transform

    Ashraf Mohamed Ali Hassan1, Mohammed S. Alzaidi2, Sherif S. M. Ghoneim2,3,*, Waleed El Nahal4

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4391-4408, 2022, DOI:10.32604/cmc.2022.024044

    Abstract This paper introduced an efficient compression technique that uses the compressive sensing (CS) method to obtain and recover sparse electrocardiography (ECG) signals. The recovery of the signal can be achieved by using sampling rates lower than the Nyquist frequency. A novel analysis was proposed in this paper. To apply CS on ECG signal, the first step is to generate a sparse signal, which can be obtained using Modified Discrete Cosine Transform (MDCT) on the given ECG signal. This transformation is a promising key for other transformations used in this search domain and can be considered… More >

  • Open Access


    Medical Image Transmission Using Novel Crypto-Compression Scheme

    Arwa Mashat1, Surbhi Bhatia2,*, Ankit Kumar3, Pankaj Dadheech3, Aliaa Alabdali4

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 841-857, 2022, DOI:10.32604/iasc.2022.021636

    Abstract The transmission of medical records over indiscrete and open networks has caused an increase in fraud involving stealing patients’ information, owing to a lack of security over these links. An individual’s medical documents represent confidential information that demands strict protocols and security, chiefly to protect the individual’s identity. Medical image protection is a technology intended to transmit digital data and medical images securely over public networks. This paper presents some background on the different methods used to provide authentication and protection in medical information security. This work develops a secure cryptography-based medical image reclamation algorithm… More >

  • Open Access


    Classification of Epileptic Electroencephalograms Using Time-Frequency and Back Propagation Methods

    Sengul Bayrak1,2,*, Eylem Yucel2, Hidayet Takci3, Ruya Samli2

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1427-1446, 2021, DOI:10.32604/cmc.2021.015524

    Abstract Today, electroencephalography is used to measure brain activity by creating signals that are viewed on a monitor. These signals are frequently used to obtain information about brain neurons and may detect disorders that affect the brain, such as epilepsy. Electroencephalogram (EEG) signals are however prone to artefacts. These artefacts must be removed to obtain accurate and meaningful signals. Currently, computer-aided systems have been used for this purpose. These systems provide high computing power, problem-specific development, and other advantages. In this study, a new clinical decision support system was developed for individuals to detect epileptic seizures… More >

  • Open Access


    A Triple-Channel Encrypted Hybrid Fusion Technique to Improve Security of Medical Images

    Ahmed S. Salama1,2,3, Mohamed Amr Mokhtar3, Mazhar B. Tayel3, Esraa Eldesouky4,6, Ahmed Ali5,6,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 431-446, 2021, DOI:10.32604/cmc.2021.016165

    Abstract Assuring medical images protection and robustness is a compulsory necessity nowadays. In this paper, a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Transform (DWT) with the energy compaction of the Discrete Wavelet Transform (DCT). The multi-level Encryption-based Hybrid Fusion Technique (EbhFT) aims to achieve great advances in terms of imperceptibility and security of medical images. A DWT disintegrated sub-band of a cover image is reformed simultaneously using the DCT transform. Afterwards, a 64-bit hex key is employed to encrypt the host image as well as participate in the… More >

  • Open Access


    A Machine Learning Approach for Expression Detection in Healthcare Monitoring Systems

    Muhammad Kashif1, Ayyaz Hussain2, Asim Munir1, Abdul Basit Siddiqui3, Aaqif Afzaal Abbasi4, Muhammad Aakif5, Arif Jamal Malik4, Fayez Eid Alazemi6, Oh-Young Song7,*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2123-2139, 2021, DOI:10.32604/cmc.2021.014782

    Abstract Expression detection plays a vital role to determine the patient’s condition in healthcare systems. It helps the monitoring teams to respond swiftly in case of emergency. Due to the lack of suitable methods, results are often compromised in an unconstrained environment because of pose, scale, occlusion and illumination variations in the image of the face of the patient. A novel patch-based multiple local binary patterns (LBP) feature extraction technique is proposed for analyzing human behavior using facial expression recognition. It consists of three-patch [TPLBP] and four-patch LBPs [FPLBP] based feature engineering respectively. Image representation is… More >

Displaying 1-10 on page 1 of 12. Per Page