Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Game Theory-Based Dynamic Weighted Ensemble for Retinal Disease Classification

    Kanupriya Mittal*, V. Mary Anita Rajam

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1907-1921, 2023, DOI:10.32604/iasc.2023.029037 - 19 July 2022

    Abstract An automated retinal disease detection system has long been in existence and it provides a safe, no-contact and cost-effective solution for detecting this disease. This paper presents a game theory-based dynamic weighted ensemble of a feature extraction-based machine learning model and a deep transfer learning model for automatic retinal disease detection. The feature extraction-based machine learning model uses Gaussian kernel-based fuzzy rough sets for reduction of features, and XGBoost classifier for the classification. The transfer learning model uses VGG16 or ResNet50 or Inception-ResNet-v2. A novel ensemble classifier based on the game theory approach is proposed More >

  • Open Access

    ARTICLE

    Brain Tumor Diagnosis Using Sparrow Search Algorithm Based Deep Learning Model

    G. Ignisha Rajathi1, R. Ramesh Kumar2, D. Ravikumar3, T. Joel4, Seifedine Kadry4,5, Chang-Won Jeong6, Yunyoung Nam7,*

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1793-1806, 2023, DOI:10.32604/csse.2023.024674 - 15 June 2022

    Abstract Recently, Internet of Medical Things (IoMT) has gained considerable attention to provide improved healthcare services to patients. Since earlier diagnosis of brain tumor (BT) using medical imaging becomes an essential task, automated IoMT and cloud enabled BT diagnosis model can be devised using recent deep learning models. With this motivation, this paper introduces a novel IoMT and cloud enabled BT diagnosis model, named IoMTC-HDBT. The IoMTC-HDBT model comprises the data acquisition process by the use of IoMT devices which captures the magnetic resonance imaging (MRI) brain images and transmit them to the cloud server. Besides,… More >

  • Open Access

    ARTICLE

    Decision Level Fusion Using Hybrid Classifier for Mental Disease Classification

    Maqsood Ahmad1,2, Noorhaniza Wahid1, Rahayu A Hamid1, Saima Sadiq2, Arif Mehmood3, Gyu Sang Choi4,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5041-5058, 2022, DOI:10.32604/cmc.2022.026077 - 21 April 2022

    Abstract Mental health signifies the emotional, social, and psychological well-being of a person. It also affects the way of thinking, feeling, and situation handling of a person. Stable mental health helps in working with full potential in all stages of life from childhood to adulthood therefore it is of significant importance to find out the onset of the mental disease in order to maintain balance in life. Mental health problems are rising globally and constituting a burden on healthcare systems. Early diagnosis can help the professionals in the treatment that may lead to complications if they… More >

  • Open Access

    ARTICLE

    An Optimized Convolution Neural Network Architecture for Paddy Disease Classification

    Muhammad Asif Saleem1, Muhammad Aamir1,2, * ,*, Rosziati Ibrahim1, Norhalina Senan1, Tahir Alyas3

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 6053-6067, 2022, DOI:10.32604/cmc.2022.022215 - 14 January 2022

    Abstract Plant disease classification based on digital pictures is challenging. Machine learning approaches and plant image categorization technologies such as deep learning have been utilized to recognize, identify, and diagnose plant diseases in the previous decade. Increasing the yield quantity and quality of rice forming is an important cause for the paddy production countries. However, some diseases that are blocking the improvement in paddy production are considered as an ominous threat. Convolution Neural Network (CNN) has shown a remarkable performance in solving the early detection of paddy leaf diseases based on its images in the fast-growing More >

  • Open Access

    ARTICLE

    RDA- CNN: Enhanced Super Resolution Method for Rice Plant Disease Classification

    K. Sathya1,*, M. Rajalakshmi2

    Computer Systems Science and Engineering, Vol.42, No.1, pp. 33-47, 2022, DOI:10.32604/csse.2022.022206 - 02 December 2021

    Abstract In the field of agriculture, the development of an early warning diagnostic system is essential for timely detection and accurate diagnosis of diseases in rice plants. This research focuses on identifying the plant diseases and detecting them promptly through the advancements in the field of computer vision. The images obtained from in-field farms are typically with less visual information. However, there is a significant impact on the classification accuracy in the disease diagnosis due to the lack of high-resolution crop images. We propose a novel Reconstructed Disease Aware–Convolutional Neural Network (RDA-CNN), inspired by recent CNN… More >

  • Open Access

    ARTICLE

    Heart Disease Classification Using Multiple K-PCA and Hybrid Deep Learning Approach

    S. Kusuma*, Dr. Jothi K. R

    Computer Systems Science and Engineering, Vol.41, No.3, pp. 1273-1289, 2022, DOI:10.32604/csse.2022.021741 - 10 November 2021

    Abstract One of the severe health problems and the most common types of heart disease (HD) is Coronary heart disease (CHD). Due to the lack of a healthy lifestyle, HD would cause frequent mortality worldwide. If the heart attack occurs without any symptoms, it cannot be cured by an intelligent detection system. An effective diagnosis and detection of CHD should prevent human casualties. Moreover, intelligent systems employ clinical-based decision support approaches to assist physicians in providing another option for diagnosing and detecting HD. This paper aims to introduce a heart disease prediction model including phases like… More >

  • Open Access

    ARTICLE

    Artificial Intelligence Enabled Apple Leaf Disease Classification for Precision Agriculture

    Fahd N. Al-Wesabi1,2,*, Amani Abdulrahman Albraikan3, Anwer Mustafa Hilal4, Majdy M. Eltahir1, Manar Ahmed Hamza4, Abu Sarwar Zamani4

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6223-6238, 2022, DOI:10.32604/cmc.2022.021299 - 11 October 2021

    Abstract Precision agriculture enables the recent technological advancements in farming sector to observe, measure, and analyze the requirements of individual fields and crops. The recent developments of computer vision and artificial intelligence (AI) techniques find a way for effective detection of plants, diseases, weeds, pests, etc. On the other hand, the detection of plant diseases, particularly apple leaf diseases using AI techniques can improve productivity and reduce crop loss. Besides, earlier and precise apple leaf disease detection can minimize the spread of the disease. Earlier works make use of traditional image processing techniques which cannot assure… More >

  • Open Access

    ARTICLE

    A Secure IoT-Cloud Based Healthcare System for Disease Classification Using Neural Network

    M. Vedaraj*, P. Ezhumalai

    Computer Systems Science and Engineering, Vol.41, No.1, pp. 95-108, 2022, DOI:10.32604/csse.2022.019976 - 08 October 2021

    Abstract The integration of the Internet of Things (IoT) and cloud computing is the most popular growing technology in the IT world. IoT integrated cloud computing technology can be used in smart cities, health care, smart homes, environmental monitoring, etc. In recent days, IoT integrated cloud can be used in the health care system for remote patient care, emergency care, disease prediction, pharmacy management, etc. but, still, security of patient data and disease prediction accuracy is a major concern. Numerous machine learning approaches were used for effective early disease prediction. However, machine learning takes more time… More >

  • Open Access

    ARTICLE

    Optimized Tuned Deep Learning Model for Chronic Kidney Disease Classification

    R. H. Aswathy1,*, P. Suresh1, Mohamed Yacin Sikkandar2, S. Abdel-Khalek3, Hesham Alhumyani4, Rashid A. Saeed4, Romany F. Mansour5

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2097-2111, 2022, DOI:10.32604/cmc.2022.019790 - 27 September 2021

    Abstract In recent times, Internet of Things (IoT) and Cloud Computing (CC) paradigms are commonly employed in different healthcare applications. IoT gadgets generate huge volumes of patient data in healthcare domain, which can be examined on cloud over the available storage and computation resources in mobile gadgets. Chronic Kidney Disease (CKD) is one of the deadliest diseases that has high mortality rate across the globe. The current research work presents a novel IoT and cloud-based CKD diagnosis model called Flower Pollination Algorithm (FPA)-based Deep Neural Network (DNN) model abbreviated as FPA-DNN. The steps involved in the… More >

  • Open Access

    ARTICLE

    Arrhythmia and Disease Classification Based on Deep Learning Techniques

    Ramya G. Franklin1,*, B. Muthukumar2

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 835-851, 2022, DOI:10.32604/iasc.2022.019877 - 22 September 2021

    Abstract Electrocardiography (ECG) is a method for monitoring the human heart’s electrical activity. ECG signal is often used by clinical experts in the collected time arrangement for the evaluation of any rhythmic circumstances of a topic. The research was carried to make the assignment computerized by displaying the problem with encoder-decoder methods, by using misfortune appropriation to predict standard or anomalous information. The two Convolutional Neural Networks (CNNs) and the Long Short-Term Memory (LSTM) fully connected layer (FCL) have shown improved levels over deep learning networks (DLNs) across a wide range of applications such as speech… More >

Displaying 11-20 on page 2 of 24. Per Page