Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (79)
  • Open Access

    ARTICLE

    Finite Displacement Analysis Using Rotational Degrees of Freedom about Three Right-angled Axes

    Humihiko Gotou1, Takashi Kuwataka1, Terumasa Nishihara1, Tetsuo Iwakuma1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 319-328, 2003, DOI:10.3970/cmes.2003.004.319

    Abstract The stiffness equation in finite displacement problems is often derived from the virtual work equation, partly in order to avoid the complicated formulation based on the potential functional. Describing the virtual rotational angles by infinitesimal rotational angles about three axes of the right-angled Cartesian coordinate system, we formulate tangent stiffness equations whose rotational degrees of freedom are described by rotational angles about the three axes. The rotational degrees of freedom are useful to treat three rotational components in nodal displacement vectors as vector components for coordinate transformation, when non-vector components like Euler's angles are used to describe finite rotations. In… More >

  • Open Access

    ARTICLE

    Finite-Element Nonlinear Dynamics of Flexible Structures in Three Dimensions

    S. Okamoto1, Y. Omura1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 287-300, 2003, DOI:10.3970/cmes.2003.004.287

    Abstract The purpose of this study is to develop a procedure for performing a dynamic analysis in the case that a structure undergoes large translational and rotational displacements when moving along a nonlinear trajectory at variable velocity. Finite-element equations of motion that include the inertial force of the structure's motion have been derived. The equations also account for the geometric nonlinearity that has to be considered in a problem of finite translational and rotational displacements. A finite rotational matrix was used to transfer vectors or matrices measured in a certain coordinate frame to those measured in another coordinate frame. The computational… More >

  • Open Access

    ARTICLE

    Element Coordinates and the Utility in Large Displacement Analysis of a Space Frame

    K. Ijima1, H. Obiya1, S. Iguchi2, S. Goto2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 239-248, 2003, DOI:10.3970/cmes.2003.004.239

    Abstract Defining element coordinates in space frame, element end deformations become statically clear from the energy principle. Therefore, the deformations can be expressed by nodal displacement without any approximation. The paper indicates that the exact expressions of the deformations and the geometrical stiffness strictly based on the equations makes large displacement analysis of space frame possible with robustness on the computation. More >

  • Open Access

    ARTICLE

    Analysis of Materials with Strain-Gradient Effects: A Meshless Local Petrov-Galerkin(MLPG) Approach, with Nodal Displacements only

    Z.Tang, S. Shen, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.1, pp. 177-196, 2003, DOI:10.3970/cmes.2003.004.177

    Abstract A meshless numerical implementation is reported of the 2-D Fleck-Hutchinson phenomenological strain-gradient theory, which fits within the framework of the Toupin-Mindlin theories and deals with first-order strain gradients and the associated work-conjugate higher-order stresses. From a mathematical point of view, the two-dimensional Toupin-Mindlin strain gradient theory is a generalization of the Poisson-Kirchhoff plate theories, involving, in addition to the fourth-order derivatives of the displacements, also a second-order derivative. In the conventional displacement-based approaches in FEM, the interpolation of displacement requires C$^{1}$ --continuity (in order to ensure convergence of the finite element procedure for 4$^{th}$ order theories), which inevitably involves very… More >

  • Open Access

    ARTICLE

    On Simple Formulations of Weakly-Singular Traction & Displacement BIE, and Their Solutions through Petrov-Galerkin Approaches

    Z. D. Han1, S. N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.1, pp. 5-20, 2003, DOI:10.3970/cmes.2003.004.005

    Abstract Using the directly derived non-hyper singular integral equations for displacement gradients [as in Okada, Rajiyah, and Atluri (1989a)], simple and straight-forward derivations of weakly singular traction BIE's for solids undergoing small deformations are presented. A large number of ``intrinsic properties'' of the fundamental solutions in elasticity are developed, and are used in rendering the tBIE and dBIE to be only weakly-singular, in a very simple manner. The solutions of the weakly singular tBIE and dBIE through either global Petrov-Galerkin type ``boundary element methods'', or, alternatively, through the meshless local Petrov-Galerkin (MLPG) methods, are discussed. As special cases, the Galerkin type… More >

  • Open Access

    ARTICLE

    Determining the Unknown Traction of a Cracked Elastic Body Using the Inverse Technique with the Dual Boundary Element Method

    Ru-Min Chao, Yen-Ji Chen, F.C. Lin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.1, pp. 73-86, 2001, DOI:10.3970/cmes.2001.002.073

    Abstract The two-dimensional elasticity problem of an isotropic material, containing a centered-crack with unknown boundary traction is studied by the inverse procedure. The dual boundary integral equations are used to analyze the problem. While solving the ill-posed inverse problem, both of the conjugate gradient method and the regularization method are used. A scaling factor depending upon the material constant μ is introduced into the sensitivity matrix in order to keep the order of magnitude the same throughout the formulation. The result by using the displacement measurement will be compared with those by stress measurement, and an extensive discussion will be given.… More >

  • Open Access

    ARTICLE

    Effect of Porosity and Magnetic Field Dependent Viscosity on Revolving Ferrofluid Flow in the Presence of Stationary Disk

    Anupam Bh,ari1, Vipin Kumar2

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.3, pp. 359-375, 2014, DOI:10.3970/fdmp.2014.010.359

    Abstract The purpose of this paper is to study the flow characteristics of a ferrofluid revolving through a porous medium with a magnetic-field-dependent viscosity in the presence of a stationary disk. A Finite Difference Method is employed to discretize the set of nonlinear coupled differential equations involved in the problem. The discretized nonlinear equations, in turn, are solved by a Newton method (using MATLAB) taking the initial guess with the help of a PDE Solver. Results displayed in graphical form are used to assess the effect of the variable viscosity and porosity parameters on the velocity components. The displacement thickness of… More >

  • Open Access

    ARTICLE

    Regularized meshless method for antiplane piezoelectricity problems with multiple inclusions

    K.H. Chen1,2, J.H. Kao3, J.T. Chen4

    CMC-Computers, Materials & Continua, Vol.9, No.3, pp. 253-280, 2009, DOI:10.3970/cmc.2009.009.253

    Abstract In this paper, solving antiplane piezoelectricity problems with multiple inclusions are attended by using the regularized meshless method (RMM). This is made possible that the troublesome singularity in the MFS disappears by employing the subtracting and adding-back techniques. The governing equations for linearly electro-elastic medium are reduced to two uncoupled Laplace's equations. The representations of two solutions of the two uncoupled system are obtained by using the RMM. By matching interface conditions, the linear algebraic system is obtained. Finally, typical numerical examples are presented and discussed to demonstrate the accuracy of the solutions. More >

  • Open Access

    ARTICLE

    Cracking and Creep Role in Displacements at Constant Load: Concrete Solids in Compression

    E. Ferretti1, A. Di Leo1

    CMC-Computers, Materials & Continua, Vol.7, No.2, pp. 59-80, 2008, DOI:10.3970/cmc.2008.007.059

    Abstract The main assumption on the basis of the identifying model of the effective law, developed by the Author, is the impossibility of considering the specimen as a continuum, when an identifying procedure from load-displacement to stress-strain in uniaxial compression is attempted. Actually, a failure mechanism with propagation of a macro-crack was found to activate from the very beginning of the uniaxial compression test forth. This leads to considering the acquired displacements as composed by two quotes: one constitutive, due to the material strain, and one of crack opening. Since the ratio between these two quotes is not constant during the… More >

  • Open Access

    ARTICLE

    A Straightforward Direct Traction Boundary Integral Method for Two-Dimensional Crack Problems Simulation of Linear Elastic Materials

    Chao Zhang1, Chunhe Yang1, Shangwei Wu2,3, Xiaolong Zhang1,2, Wen Nie2,*

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 761-775, 2019, DOI:10.32604/cmc.2019.04363

    Abstract This paper presents a direct traction boundary integral equation method (DTBIEM) for two-dimensional crack problems of materials. The traction boundary integral equation was collocated on both the external boundary and either side of the crack surfaces. The displacements and tractions were used as unknowns on the external boundary, while the relative crack opening displacement (RCOD) was chosen as unknowns on either side of crack surfaces to keep the single-domain merit. Only one side of the crack surfaces was concerned and needed to be discretized, thus the proposed method resulted in a smaller system of algebraic equations compared with the dual… More >

Displaying 61-70 on page 7 of 79. Per Page