Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (75)
  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER ANALYSIS ON MHD MIXED CONVECTION FLOW OF RADIATIVE CHEMICALLY HEAT GENERATING FLUID WITH VISCOUS DISSIPATION AND THERMO-DIFFUSION EFFECT

    Sanjib Senguptaa,*, Amrit Karmakarb

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-13, 2018, DOI:10.5098/hmt.11.30

    Abstract In this paper an analysis on heat and mass transfer is made to study magnetohydrodynamic (MHD) mixed convective flow of an incompressible viscous fluid flowing past an inclined plate. A magnetic field of uniform strength is applied to the plate to influence the flow. Due to weak voltage differences caused by the very low polarization charges, the influence of electric field is considered to be neglected. Again large temperature gradient ensures cross diffusion effect like thermo-diffusion (Soret) in the field. The governed set of non-linear partial differential equations is solved by developing a multi-parameter asymptotic perturbation scheme. The influence of… More >

  • Open Access

    ARTICLE

    MELTING AND RADIATION EFFECTS ON MIXED CONVECTION BOUNDARY LAYER VISCOUS FLOW OVER A VERTICAL PLATE IN PRESENCE OF HOMOGENEOUS HIGHER ORDER CHEMICAL REACTION

    D. R. V. S. R. K. Sastry

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.3

    Abstract The present paper investigates the combined effects of melting phenomenon and viscous dissipation over a steady incompressible mixed convection boundary layer fluid flow along a vertical plate. Radiation and double dispersion are also taken into consideration. Further effect of homogeneous chemical reaction of order ’n’ is studied over the non-Darcy porous plate. Continuum equations that characterize fluid flow are transformed to a set of non linear ordinary differential equations through a suitable similarity transformation. These equations are then solved by MATLAB ’bvp4c’ iterative programming method. As a matter of accuracy and validation, available results are compared with the present study… More >

  • Open Access

    ARTICLE

    VISCOUS DISSIPATION EFFECT ON TRANSIENT ALIGNED MAGNETIC FREE CONVECTIVE FLOW PAST AN INCLINED MOVING PLATE

    G. Dharmaiaha,* , Ali J. Chamkhab, N. Vedavathic , K.S. Balamurugand

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-11, 2019, DOI:10.5098/hmt.12.17

    Abstract The present analysis is focused on free convective heat and mass transfer characteristics of magneto flow through a moving inclined plate under the influence of Aligned magnetic, viscous dissipation and thermal radiation. A uniform magnetic field is applied perpendicular to the plate. The governing non-dimensional linear partial differential equations are solved by using perturbation technique. Graphical results for the velocity, temperature and concentration distributions within the boundary layer for several physical parameters and tabulated results for the Skin-friction, the Nusselt number and the Sherwood number are displayed and discussed. The effect of increasing values of the viscous dissipation parameter or… More >

  • Open Access

    ARTICLE

    ROLE OF MAXWELL VELOCITY AND SMOLUCHOWSKI TEMPERATURE JUMP SLIP BOUNDARY CONDITIONS TO NON-NEWTONIAN CARREAU FLUID

    T. Sajid , M. Sagheer, S. Hussain

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-12, 2020, DOI:10.5098/hmt.14.28

    Abstract The forthright aim of this correspondence is to examine the conduct of MHD, viscous dissipation and Joule heating on three dimensional nonNewtonian Carreau fluid flow over a linear stretching surface. Impact of non-linear Rosseland thermal radiation and homogenous/heterogenous reaction process have been also considered to examine the heat and mass transfer process during fluid flow. The velocity and thermal slip effect at the surface have also been scrutinized in detail. By utilizing a suitable transformation, the modelled partial differential equations (PDEs) are renovated into ordinary differential equations (ODEs) and furthermore solved with the help of the numerical procedure namely the… More >

  • Open Access

    ARTICLE

    UNSTEADY MHD BLASIUS AND SAKIADIS FLOWS WITH VARIABLE THERMAL CONDUCTIVITY IN THE PRESENCE OF THERMAL RADIATION AND VISCOUS DISSIPATION

    Stanford Shateyia,∗, Hillary Muzarab

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-10, 2020, DOI:10.5098/hmt.14.18

    Abstract A theoretical analysis has been carried out to investigate the influence of unsteadiness on the laminar two-phase magnetohydrodynamic nanofluid flow filled with porous medium under the combined effects of Brownian motion and thermophoresis. Thermal variable conductivity, thermal radiation and viscous dissipation effects are also considered in this numerical study. The highly nonlinear partial differential equations are transformed into a set of coupled nonlinear ordinary differential equations through suitable similarity transformations. The resultant ordinary differential equations are then numerically solved using the spectral quasilinearization method. The effects of the pertinent physical parameters over the fluid velocity, temperature, concentration, skin friction, Nusselt… More >

  • Open Access

    ARTICLE

    INFLUENCE OF CRITICAL PARAMETERS OF THERMOPHOROSIS ON MHD NON-DARCY FLOW OF A CASSON FLUID PAST A PERMEABLE STRETCHING SHEET

    Kolli Vijayaa,* , G. Venkata Ramana Reddya

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-8, 2020, DOI:10.5098/hmt.14.12

    Abstract Present investigation aims at analyzing the properties of heat and transport phenomena of thermal energy and species mass in a non-Darcy Casson fluid flow induced by a erected porous elongated surface considering the effect of non-linear radioactive heat, thermophorosis, first order chemical reaction, Newtonian heating, thermo diffusion, permeability and slip conditions. Influence of critical parameters are widely studied. By inducing the variables of similarity the basic boundary layer equations are transmuted into dimensionless equations and are resolved arithmetically using Runge – Kutta – Fehlberg shooting techniques method. The dominance of critical parameters against velocity, temperature, and concentration are explicated through… More >

  • Open Access

    ARTICLE

    ANALYSIS OF ARRHENIUS ACTIVATION ENERGY IN ELECTRICALLY CONDUCTING CASSON FLUID FLOW INDUCED DUE TO PERMEABLE ELONGATED SHEET WITH CHEMICAL REACTION AND VISCOUS DISSIPATION

    N. Vijayaa,*, S. M. Arifuzzamanb, N. Raghavendra Saic, Ch. Manikya Raod

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-9, 2020, DOI:10.5098/hmt.15.26

    Abstract The upfront intension of this study is to explore the advances in electrically conducting Casson fluid induced due to a porous elongated surface taking Arrhenius activation energy, viscous dissipation and joule heating into account. Uniform magnetic and electric fields are imposed on the given flow. Variables of similarity are induced to transmute partial differential equations into dimensionless equations and resolved numerically by elegant method bvp4c. To scrutinize the behavior of critical parameters on flow configurations graphs and table are portrayed. From graphical moments, it is analyzed that velocity of the liquid diminish for advanced values of non-Newtonian rheology parameter, magnetic… More >

  • Open Access

    ARTICLE

    ENTROPY GENERATION AND TEMPERATURE GRADIENT HEAT SOURCE EFFECTS ON MHD COUETTE FLOW WITH PERMEABLE BASE IN THE PRESENCE OF VISCOUS AND JOULES DISSIPATION

    K.S. Balamurugana,*, N. Udaya Bhaskara Varmab, J.L. Ramaprasadc

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-7, 2020, DOI:10.5098/hmt.15.8

    Abstract In this paper the entropy generation and temperature gradient heat source effects on MHD couette flow with permeable base in the presence of thermal radiation, viscous and joule's dissipation is studied. An exact solution of governing equations has been attained in closed form. The influences of several parameters on the velocity and temperature profiles and entropy generation are analyzed through graphs. Bejan number for different values have been calculated and displayed pictorially. The skin friction coefficient and Nusselt number at channel walls are derived and discussed their behaviour through tables. The entropy generation increases with intensifying magnetic field or thermal… More >

  • Open Access

    ARTICLE

    EFFECTS OF VISCOUS DISSIPATION AND AXIAL HEAT CONDUCTION ON FORCED CONVECTION FLOW OF HERSCHELBULKLEY FLUID IN CIRCULAR DUCT WITH AXIALLY VARIABLE WALL HEAT FLUX

    Rabha Khatyr*, Jaafar Khalid Naciri

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-11, 2020, DOI:10.5098/hmt.15.5

    Abstract The present study focuses on the effects of viscous dissipation and axial heat conduction on the asymptotic behavior of the laminar forced convection in a circular duct for a Herschel-Bulkley fluid with variable wall heat flux. Analytical asymptotic solutions are presented for the case of axial variations of the wall heat flux, with finite non-vanishing values at infinity along the flow direction. The asymptotic bulk and mixing Nusselt numbers and the asymptotic bulk and mixing temperature distributions are evaluated analytically in the case of axially variable wall heat flux for which polynomial and logarithmic functions are considered as examples. It… More >

  • Open Access

    ARTICLE

    Response Spectrum Analysis of 7-story Assembled Frame Structure with Energy Dissipation System

    Jin Zhao, Yi Wang*, Zhengwei Ma

    Structural Durability & Health Monitoring, Vol.17, No.2, pp. 159-173, 2023, DOI:10.32604/sdhm.2023.09601

    Abstract Viscoelastic damper is an effective passive damping device, which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures. It has a wide application prospect in actual structural vibration control because of simple device and economical material. In view of the poor seismic behaviors of assembled frame structure connections, various energy dissipation devices are proposed to improve the seismic performance. The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters. The response spectrum of a 7-story assembled frame structure combined the ordinary steel support, ordinary viscoelastic… More >

Displaying 21-30 on page 3 of 75. Per Page