Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,372)
  • Open Access

    ARTICLE

    A Fast Space-Time BEM Method for 3D Elastodynamics

    J. X. Zhou1, T. Koziara1, T. G. Davies1

    CMES-Computer Modeling in Engineering & Sciences, Vol.16, No.2, pp. 131-140, 2006, DOI:10.3970/cmes.2006.016.131

    Abstract The classical BEM approach for elastodynamics can produce poor results when high gradients are generated by impulses. High gradient areas evolve over time and their locations are unknown a priori, so they usually can not be captured by uniform meshes. In this paper, we propose a novel method which interpolates both spatial and temporal domains. A direct space-time discretization scheme is used to capture the wave fronts accurately and to forestall generation of spurious oscillations there. Some numerical examples are given to demonstrate the power and scope of the method. More >

  • Open Access

    ARTICLE

    Multiscale Simulation of Nanoindentation Using the Generalized Interpolation Material Point (GIMP) Method, Dislocation Dynamics (DD) and Molecular Dynamics (MD)

    Jin Ma, Yang Liu, Hongbing Lu, Ranga Komanduri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.16, No.1, pp. 41-56, 2006, DOI:10.3970/cmes.2006.016.041

    Abstract A multiscale simulation technique coupling three scales, namely, the molecular dynamics (MD) at the atomistic scale, the discrete dislocations at the meso scale and the generalized interpolation material point (GIMP) method at the continuum scale is presented. Discrete dislocations are first coupled with GIMP using the principle of superposition (van der Giessen and Needleman (1995)). A detection band seeded in the MD region is used to pass the dislocations to and from the MD simulations (Shilkrot, Miller and Curtin (2004)). A common domain decomposition scheme for each of the three scales was implemented for parallel processing. Simulations of indentation were… More >

  • Open Access

    ARTICLE

    Application of Boundary Element Method to Modelling of Added Mass and Its Effect on Hydrodynamic Forces

    Paola Gardano1, Peter Dabnichki1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.2, pp. 87-98, 2006, DOI:10.3970/cmes.2006.015.087

    Abstract The work presents a numerical simulation of hydrodynamic forces generated in front crawl swimming. The three dimensional Laplace's equation is used for the analysis of the flow around a moving body in an infinite domain and considers the effect of the added mass and the acceleration on the hydrodynamic forces (Drag and Lift) generated by the interaction between the flow and the body at different geometric configurations of the arm -- variable elbow angle. Boundary Element Method (BEM) was used to obtain the solution of the three dimensional equation numerically. The aim of the work was two-fold:
    1) to… More >

  • Open Access

    ARTICLE

    Multiscale Simulation Using Generalized Interpolation Material Point (GIMP) Method and Molecular Dynamics (MD)1

    J. Ma2, H. Lu2, B. Wang2, R. Hornung3, A. Wissink3, R. Komanduri2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.2, pp. 101-118, 2006, DOI:10.3970/cmes.2006.014.101

    Abstract A new method for multiscale simulation bridging two scales, namely, the continuum scale using the generalized interpolation material point (GIMP) method and the atomistic scale using the molecular dynamics (MD), is presented and verified in 2D. The atomistic strain from the molecular dynamics simulation is determined through interpolation of the displacement field into an Eulerian background grid using the same generalized interpolation functions as that in the GIMP method. The atomistic strain is consistent with that determined from the virial theorem for interior points but provides more accurate values at the boundary of the MD region and in the transition… More >

  • Open Access

    ARTICLE

    Structured Mesh Refinement in Generalized Interpolation Material Point (GIMP) Method for Simulation of Dynamic Problems

    Jin Ma, Hongbing Lu, Ranga Komanduri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.3, pp. 213-228, 2006, DOI:10.3970/cmes.2006.012.213

    Abstract The generalized interpolation material point (GIMP) method, recently developed using a C1 continuous weighting function, has solved the numerical noise problem associated with material points just crossing the cell borders, so that it is suitable for simulation of relatively large deformation problems. However, this method typically uses a uniform mesh in computation when one level of material points is used, thus limiting its effectiveness in dealing with structures involving areas of high stress gradients. In this paper, a spatial refinement scheme of the structured grid for GIMP is presented for simulations with highly localized stress gradients. A uniform structured background… More >

  • Open Access

    ARTICLE

    Applications of MLPG Method in Dynamic Fracture Problems

    L. Gao1, K. Liu1,2, Y. Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.3, pp. 181-196, 2006, DOI:10.3970/cmes.2006.012.181

    Abstract A new numerical algorithm based on the Meshless Local Petrov-Galerkin approach is presented for analyzing the dynamic fracture problems in elastic media. To simplify the treatment of essential boundary condition, a novel modified Moving Least Square (MLS) procedure is proposed by introducing Lagrange multiplier into MLS procedure, which can perform both MLS approximation and interpolation in one approximation domain. The compact spline function is used as the test function in the local form of elasto-dynamic equations. For the feature of stress wave propagation, the coupled second-order ODEs respect to the time are solved by the explicit central difference method with… More >

  • Open Access

    ARTICLE

    Preserving Constraints of Differential Equations by Numerical Methods Based on Integrating Factors

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.2, pp. 83-108, 2006, DOI:10.3970/cmes.2006.012.083

    Abstract The system we consider consists of two parts: a purely algebraic system describing the manifold of constraints and a differential part describing the dynamics on this manifold. For the constrained dynamical problem in its engineering application, it is utmost important to developing numerical methods that can preserve the constraints. We embed the nonlinear dynamical system with dimensions n and with k constraints into a mathematically equivalent n + k-dimensional nonlinear system, which including k integrating factors. Each subsystem of the k independent sets constitutes a Lie type system of X˙i = AiXi with Aiso(ni,1) and n1 +···+nkMore >

  • Open Access

    ARTICLE

    Past Cone Dynamics and Backward Group Preserving Schemes for Backward Heat Conduction Problems

    C.-S. Liu1, C.-W. Chang2, J.-R. Chang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.1, pp. 67-82, 2006, DOI:10.3970/cmes.2006.012.067

    Abstract In this paper we are concerned with the backward problems governed by differential equations. It is a first time that we can construct a backward time dynamics on the past cone, such that an augmented dynamical system of the Lie type X˙ = B(X,t)X with t ∈ R, X ∈ Mn+1 lying on the past cone and Bso(n,1), was derived for the backward differential equations system x· =f(x,t), t ∈ R, x ∈ Rn. These two differential equations systems are mathematically equivalent. Then we apply the backward group preserving scheme (BGPS), which is an explicit single-step… More >

  • Open Access

    ARTICLE

    An Efficient Backward Group Preserving Scheme for the Backward in Time Burgers Equation

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.1, pp. 55-66, 2006, DOI:10.3970/cmes.2006.012.055

    Abstract In this paper we are concerned with the numerical integration of Burgers equation backward in time. We construct a one-step backward group preserving scheme (BGPS) for the semi-discretization of Burgers equation. The one-step BGPS is very effectively to calculate the solution at an initial time t = 0 from a given final data at t = T, which with a time stepsize equal to T and with a suitable grid length produces a highly accurate solution never seen before. Under noisy final data the BGPS is also robust to against the disturbance. When the solution appears steep gradient, several steps… More >

  • Open Access

    ARTICLE

    Thermohydrodynamic Analysis of Journal Bearings Lubricated with Multigrade Oils

    J.Y. Jang1, M.M. Khonsari2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.4, pp. 455-464, 2002, DOI:10.3970/cmes.2002.003.455

    Abstract Thermohydrodynamic analysis of journal bearings lubricated with multigrade oils is presented. Design charts are presented that enable one to readily estimate the bearing maximum temperature and the shaft temperature using a series of dimensionless parameters introduced in this paper. More >

Displaying 1121-1130 on page 113 of 1372. Per Page