Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,372)
  • Open Access

    ARTICLE

    A Generalized Level Set-Navier Stokes Numerical Method for Predicting Thermo-Fluid Dynamics of Turbulent Free Surface

    Ashraf Balabel

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.6, pp. 599-638, 2012, DOI:10.3970/cmes.2012.083.599

    Abstract In the present paper, a new generalized level set numerical method based on the Fast Marching Method is developed for predicting the moving interface thermo-fluid dynamics in turbulent free surface flows. The numerical method is devoted to predict the turbulent interfacial dynamics resulting from either aerodynamic force or thermocapillary effects. The unsteady Reynolds averaged Navier-Stokes equations (RANS) and energy equation are coupled with the level set method and solved separately in each phase using the finite volume method on a non-staggered grid system. The application of the fast marching technique enables the fast as well as the accurate transport of… More >

  • Open Access

    ARTICLE

    Numerical Investigation on Dynamical Response of Aluminum Foam Subject to Hypervelocity Impact With Material Point Method

    Weiwei Gong, Yan Liu, Xiong Zhang, Honglei Ma

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.5, pp. 527-546, 2012, DOI:10.3970/cmes.2012.083.527

    Abstract Owing to its low density and good energy absorption capability, aluminum foam is an excellent protective material for spacecraft against debris impact. However, because of its complicated microstructure, it is very difficult to generate a FEM mesh accounting for the real microstructure of the alluminum foam. On the contrary, it is very easy to model three-dimensional problems with very complicated geometry with meshfree/meshless methods. Furthermore, the material point method has obvious advantages in modeling problems involving extreme large deformation problems like hypervelocity impact problem. In this paper, a three-dimensional material point model accounting for the real microsctructure of aluminum foam… More >

  • Open Access

    ARTICLE

    A Linear Strain, Curvature-Driven Triangular Element for the Analysis of Membrane Structures

    P.D.Gosling1, L. Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.2, pp. 97-142, 2012, DOI:10.32604/cmes.2012.083.097

    Abstract The analysis of membrane structures is made complex by the essentially anti-clastic geometry and flexibility introducing significant geometric non-linearities. With the increasing application of these structures in high-profile projects, the introduction of new materials in the form of ETFE foil, for example, and the impending requirements of a membrane structures-specific Eurocode, the need for high quality analysis capabilities is paramount. Existing formulations lag behind shell element counterparts and are based on a range of principles, from discrete to continua, and uniaxial to plane stress constitutive laws. In this paper, we present a linear strain triangular element for the efficient and… More >

  • Open Access

    ARTICLE

    Numerical Study of Dynamic Compression Process of Aluminum Foam with Material Point Method

    Weiwei Gong1, Xiong Zhang1,2, Xinming Qiu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.3&4, pp. 195-214, 2011, DOI:10.32604/cmes.2011.082.195

    Abstract Due to its high strength, low weight and strong anti impact capability, aluminum foam has great potential in the fields of transportation, aerospace and building structures as energy absorbing materials. Due to its complicated microstructures, it is desirable to develop an efficient numerical method to study the dynamic response of the aluminum foam under impact loading. In this paper, the material point method (MPM) is extended to the numerical simulation of the dynamic response of the aluminum foam under impact loading by incorporating the Deshpande Fleck's model and a volumetric strain failure model into our three-dimensional explicit material point method… More >

  • Open Access

    ARTICLE

    A New Homotopy Perturbation Method for Solving an Ill-Posed Problem of Multi-Source Dynamic Loads Reconstruction

    Linjun Wang1, Xu Han2, Youxiang Xie3

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.3&4, pp. 179-194, 2011, DOI:10.32604/cmes.2011.082.179

    Abstract In this paper, a new homotopy perturbation method (IHPM) is presented and suggested to solve an ill-posed problem of multi-source dynamic loads reconstruction. We propose a stable and reliable modification, and obtain a new regularization method, then employ it to find the exact solution for the multi-source dynamic load identification problem. Also, this present method only needs easy computations rather than successive integrations. Finally, the performances of two numerical examples are given. Comparisons are performed between the original homotopy perturbation method (HPM) and IHPM. The results verify that the present method is very simple and effective. More >

  • Open Access

    ARTICLE

    Computation of the time-dependent Green's function of three dimensional elastodynamics in 3D quasicrystals

    V.G. Yakhno1, H.Çerdik Yaslan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.81, No.3&4, pp. 295-310, 2011, DOI:10.3970/cmes.2011.081.295

    Abstract The time-dependent differential equations of elasticity for 3D quasicrystals are considered in the paper. These equations are written in the form of a vector partial differential equation of the second order with symmetric matrix coefficients. The Green's function is defined for this vector partial differential equation. A new method of the numerical computation of values of the Green's function is proposed. This method is based on the Fourier transformation and some matrix computations. Computational experiments confirm the robustness of our method for the computation of the time-dependent Green's function in icosahedral quasicrystals. More >

  • Open Access

    ARTICLE

    A Revision of Relaxed Steepest Descent Method from the Dynamics on an Invariant Manifold

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.80, No.1, pp. 57-86, 2011, DOI:10.3970/cmes.2011.080.057

    Abstract Based-on the ordinary differential equations defined on an invariant manifold, we propose a theoretical procedure to derive a Relaxed Steepest Descent Method (RSDM) for numerically solving an ill-posed system of linear equations when the data are polluted by random noise. The invariant manifold is defined in terms of a squared-residual-norm and a fictitious time-like variable, and in the final stage we can derive an iterative algorithm including a parameter, which is known as the relaxation parameter. Through a Hopf bifurcation, this parameter indeed plays a major role to switch the situation of slow convergence to a new situation with faster… More >

  • Open Access

    ARTICLE

    Atomistic Exploration of Deformation Properties of Copper Nanowires with Pre-Existing Defects

    H.F. Zhan, Y.T. Gu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.80, No.1, pp. 23-56, 2011, DOI:10.3970/cmes.2011.080.023

    Abstract Based on the embedded atom method (EAM) and molecular dynamics (MD) method, in this paper, the tensile deformation properties of Cu nanowires (NWs) with different pre-existing defects, including single surface defects, surface bi-defects and single internal defects, are systematically studied. In-depth deformation mechanisms of NWs with pre-existing defects are also explored. It is found that Young's modulus is insensitive to different pre-existing defects, but yield strength shows an obvious decrease. Defects are observed influencing greatly on NWs' tensile deformation mechanisms, and playing a role of dislocation sources. Besides of the traditional deformation process dominated by the nucleation and propagation of… More >

  • Open Access

    ARTICLE

    A Numerical Technique Based on Integrated RBFs for the System Evolution in Molecular Dynamics

    N. Mai-Duy1, T. Tran-Cong1, N. Phan-Thien2

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 223-236, 2011, DOI:10.3970/cmes.2011.079.223

    Abstract This paper presents a new numerical technique for solving the evolution equations in molecular dynamics (MD). The variation of the MD system is represented by radial-basis-function (RBF) equations which are constructed using integrated multiquadric basis functions and point collocation. The proposed technique requires the evaluation of forces once per time step. Several examples are given to demonstrate the attractiveness of the present implementation. More >

  • Open Access

    ARTICLE

    Simulation of Sloshing Effect on Vessel Motions by Using MPS (Moving Particle Simulation)

    K.S. Kim1, B.H. Lee2, M.H. Kim1, J.C. Park3

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 201-222, 2011, DOI:10.3970/cmes.2011.079.201

    Abstract The coupling and interactions between vessel motion and inner-tank sloshing are investigated by a potential-CFD (Computational Fluid Dynamics) hybrid method in time domain. Potential-theory-based 3D diffraction/radiation panel program is used to obtain the hydrodynamic coefficients and wave forces for the simulation of vessel motion in time domain. The liquid sloshing in tanks is simulated in time domain by using the improved Moving Particle Simulation (PNU-MPS) method and it is validated through comparison against sloshing experiments. The calculated sloshing tank forces and moments are applied to the vessel-motion simulation as excitation forces and moments. The updated ship motion, which is influenced… More >

Displaying 1141-1150 on page 115 of 1372. Per Page