Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,372)
  • Open Access

    ARTICLE

    A 3D Numerical Model for a Flexible Fiber Motion in Compressible Swirling Airflow

    Hui-Fen Guo1,2, Bin-Gang Xu1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.61, No.3, pp. 201-222, 2010, DOI:10.3970/cmes.2010.061.201

    Abstract A numerical method is developed for modeling the dynamics of a flexible fiber immersed in a compressible swirling flow. The modeling approach is based on combining an Eulerian finite volume formulation for the fluid flow and a Lagrangian small-deformation formulation for the dynamics of the fiber. The fiber is modeled as a chain of beads connected through mass-less rods. The bending and twisting deformation of the fiber are represented by the displacements of the successive beads. A computational strategy is proposed for the computation of the fluid parameters at the center of discrete fiber sections. To deal with the fiber-wall… More >

  • Open Access

    ARTICLE

    Dynamic Analysis of Porous Media Considering Unequal Phase Discretization by Meshless Local Petrov-Galerkin Formulations

    Delfim Soares Jr.1

    CMES-Computer Modeling in Engineering & Sciences, Vol.61, No.2, pp. 177-200, 2010, DOI:10.3970/cmes.2010.061.177

    Abstract In this work, meshless methods based on the local Petrov-Galerkin approach are employed for the time-domain dynamic analysis of porous media. For the spatial discretization of the pore-dynamic model, MLPG formulations adopting Gaussian weight functions as test functions are considered, as well as the moving least square method is used to approximate the incognita fields. For time discretization, the generalized Newmark method is adopted. The present work is based on the u-p formulation and the incognita fields of the coupled analysis in focus are the solid skeleton displacements and the interstitial fluid pore pressures. Independent spatial discretization is considered for… More >

  • Open Access

    ARTICLE

    A Fractional Order HIV Internal Viral Dynamics Model

    Caibin Zeng1, Qigui Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.59, No.1, pp. 65-78, 2010, DOI:10.3970/cmes.2010.059.065

    Abstract In this paper, a fractional order model is established to describe HIV internal viral dynamics involving HAART effect. First, the model is proved to possess non-negative solutions as desired in any population dynamics. Then, a detailed analysis is carried out to study the stability of equilibrium points. Numerical simulations are presented to illustrate the stability analysis. More >

  • Open Access

    ARTICLE

    BEM Solutions for 2D and 3D Dynamic Problems in Mindlin's Strain Gradient Theory of Elasticity

    A. Papacharalampopoulos2, G. F. Karlis2, A. Charalambopoulos3, D. Polyzos4

    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.1, pp. 45-74, 2010, DOI:10.3970/cmes.2010.058.045

    Abstract A Boundary Element Method (BEM) for solving two (2D) and three dimensional (3D) dynamic problems in materials with microstructural effects is presented. The analysis is performed in the frequency domain and in the context of Mindlin's Form II gradient elastic theory. The fundamental solution of the differential equation of motion is explicitly derived for both 2D and 3D problems. The integral representation of the problem, consisting of two boundary integral equations, one for displacements and the other for its normal derivative is exploited for the proposed BEM formulation. The global boundary of the analyzed domain is discretized into quadratic line… More >

  • Open Access

    ARTICLE

    New Interpretation to Variational Iteration Method: Convolution Iteration Method Based on Duhamel's Principle for Dynamic System Analysis

    Yunhua Li1,2, Yunze Li3, Chieh-Li Chen4, Cha’o-Kuang Chen5

    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.1, pp. 1-14, 2010, DOI:10.3970/cmes.2010.058.001

    Abstract Addressing the identification problem of the general Lagrange multiplier in the He's variational iteration method, this paper proposes a new kind of method based on Duhamel's principle for the dynamic system response analysis. In this method, we have constructed an analytical iteration formula in terms of the convolution for the residual error at the nth iteration, and have given a new interpretation to He's variational iteration method. The analysis illustrates that the computational result of this method is equal to that of He's variational iteration method on the assumption of considering the impulse response of the linear parts, or equal… More >

  • Open Access

    ARTICLE

    Dynamic Stress Intensity Factors of Mode I Crack Problem for Functionally Graded Layered Structures

    Sheng-Hu Ding1,2, Xing Li2, Yue-Ting Zhou2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.1, pp. 43-84, 2010, DOI:10.3970/cmes.2010.056.043

    Abstract In this paper, the crack-tip fields in bonded functionally graded finite strips are studied. Different layers may have different nonhomogeneity properties in the structure. A bi-parameter exponential function was introduced to simulate the continuous variation of material properties. The problem was reduced as a system of Cauchy singular integral equations of the first kind by Laplace and Fourier integral transforms. Various internal cracks and edge crack and crack crossing the interface configurations are investigated, respectively. The asymptotic stress field near the tip of a crack crossing the interface is examined and it is shown that, unlike the corresponding stress field… More >

  • Open Access

    ARTICLE

    Size Effects and Mesh Independence in Dynamic Fracture Analysis of Brittle Materials

    Letícia Fleck Fadel Miguel1, Ignacio Iturrioz2, Jorge Daniel Riera3

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.1, pp. 1-16, 2010, DOI:10.3970/cmes.2010.056.001

    Abstract Numerical predictions of the failure load of large structures, accounting for size effects, require the adoption of appropriate constitutive relations. These relations depend on the size of the elements and on the correlation lengths of the random fields that describe material properties. The authors proposed earlier expressions for the tensile stress-strain relation of concrete, whose parameters are related to standard properties of the material, such as Young's modulus or specific fracture energy and to size. Simulations conducted for a typical concrete showed that as size increases, the effective stress-strain diagram becomes increasingly linear, with a sudden rupture, while at the… More >

  • Open Access

    ARTICLE

    Node Placement Method by Bubble Simulation and Its Application

    Ying Liu1, Yufeng Nie2, Weiwei Zhang2, Lei Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.1, pp. 89-110, 2010, DOI:10.3970/cmes.2010.055.089

    Abstract In the light of the ideas and treatment technologies about molecular dynamics simulation and bubble meshing, a new approach of node placement for the meshless method called node placement method by bubble simulation (NPBS method), is proposed. Nodes are seen as the centers of the bubbles which can be moved by their interacting forces. Through dynamic simulation, bubbles are placed into a near-optimal configuration, and the centers of bubbles will form a good-quality node distribution in the domain. This process doesn't need updating the mesh connection constantly, i.e., is totally meshfree. Some example results show that the uniform point sets… More >

  • Open Access

    ARTICLE

    Dispersion Relations of Axisymmetric Wave Propagation in Finite Pre-Stretched Compound Circular Cylinders Made from Highly Elastic Incompressible Materials

    Surkay D. Akbarov1,2,3, Mugan S. Guliev4, Ramazan Tekercioglu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.55, No.1, pp. 1-32, 2010, DOI:10.3970/cmes.2010.055.001

    Abstract Dispersion relations of axisymmetric longitudinal wave propagation in a finite pre-strained compound (bi-material) cylinder made from high elastic incompressible materials are investigated within the scope of a piecewise homogeneous body model utilizing three-dimensional linearized theory wave propagation in the initially stressed body. The materials of the inner and outer cylinders are assumed to be neo-Hookean. The numerical results regarding the influence of the initial strains in the inner and outer cylinders on the wave dispersion are presented and discussed. These results are obtained for the case where the material of the inner solid cylinder is stiffer than that of the… More >

  • Open Access

    ARTICLE

    An Iterative Time-Domain Algorithm for Acoustic-Elastodynamic Coupled Analysis Considering Meshless Local Petrov-Galerkin Formulations

    Delfim Soares Jr.1

    CMES-Computer Modeling in Engineering & Sciences, Vol.54, No.2, pp. 201-222, 2009, DOI:10.3970/cmes.2009.054.201

    Abstract In this work, meshless methods based on the local Petrov-Galerkin approach are employed for the time-domain analysis of interacting fluid and solid systems. For the spatial discretization of the acoustic fluid and elastodynamic solid sub-domains involved in the coupled analyses, MLPG formulations adopting Gaussian weight functions as test functions are considered, as well as the moving least square method is used to approximate the incognita fields. For time discretization, the Houbolt's method is adopted. The fluid-solid coupled analysis is accomplished by an iterative algorithm. In this iterative approach, each sub-domain of the global model is analysed independently (as an uncoupled… More >

Displaying 1171-1180 on page 118 of 1372. Per Page