Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    Low and High Velocity Impact Studies on Fabric Reinforced Concrete Panels

    Smitha Gopinath1, C.K. Madheswaran1, A. Rama Ch,ra Murthy1, Nagesh. R. Iyer2, Barkavi.T3

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.2, pp. 151-172, 2013, DOI:10.3970/cmes.2013.092.151

    Abstract This paper presents the details of experimental and numerical investigations performed on fabric reinforced concrete (FABcrete) panels under impact loading. Experimental investigations have been carried out using drop weight impact on a square FABcrete panel to study the damage, failure mode and acceleration. The drop weight of 20 kg is used for the study and drop heights have been varied as 100mm, 200mm and 300mm. Numerical simulation of the drop weight impact tests on FABcrete panels have been carried out and observed that there is a good correlation between experimental and numerical predictions. It is observed that the FABcrete specimen… More >

  • Open Access

    ARTICLE

    Thermohydrodynamic Analysis of Journal Bearings Lubricated with Multigrade Oils

    J.Y. Jang1, M.M. Khonsari2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.4, pp. 455-464, 2002, DOI:10.3970/cmes.2002.003.455

    Abstract Thermohydrodynamic analysis of journal bearings lubricated with multigrade oils is presented. Design charts are presented that enable one to readily estimate the bearing maximum temperature and the shaft temperature using a series of dimensionless parameters introduced in this paper. More >

  • Open Access

    ARTICLE

    A 2-D Time-Domain BIEM for Dynamic Analysis of Cracked Orthotropic Solids1

    Ch. Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.3, pp. 381-398, 2002, DOI:10.3970/cmes.2002.003.381

    Abstract A 2-D time-domain boundary integral equation method (BIEM) for transient dynamic analysis of cracked orthotropic solids is presented in this paper. A finite crack in an unbounded orthotropic solid subjected to an impact loading is considered. Hypersingular time-domain traction boundary integral equations (BIEs) are applied in the analysis. A time-stepping scheme is developed for solving the hypersingular time-domain traction BIEs. The scheme uses a convolution quadrature formula for temporal and a Galerkin method for spatial discretizations. Numerical examples are given to show that the presented time-domain BIEM is highly efficient and accurate. More >

  • Open Access

    ARTICLE

    Impact Failure Analysis of Reinforced Concrete Structural Components by Using Finite Element Method

    A. Ramachandra Murthy1 , G.S. Palani1 , Nagesh R. Iyer1 , Smitha Gopinath1 and V. Ramesh Kumar1

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.5, pp. 409-434, 2012, DOI:10.3970/cmes.2012.086.409

    Abstract This paper presents the details of projectile impact on reinforced concrete structural components. Nonlinear explicit transient dynamic analysis has been carried out by using finite element method. Concrete damage model has been employed to represent the nonlinear behaviour of target under impact load. Various methods of modeling of reinforcement have been explained. A brief note on equation of state for concrete, contact algorithms and nonlinear explicit transient dynamic analysis has been given. Numerical studies have been carried out to compute the response of concrete target due to impact of projectile. The computed penetration depth have been compared with the corresponding… More >

  • Open Access

    ARTICLE

    Static and Dynamic BEM Analysis of Strain Gradient Elastic Solids and Structures

    S.V. Tsinopoulos1, D. Polyzos2, D.E. Beskos3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.2, pp. 113-144, 2012, DOI:10.3970/cmes.2012.086.113

    Abstract This paper reviews the theory and the numerical implementation of the direct boundary element method (BEM) as applied to static and dynamic problems of strain gradient elastic solids and structures under two- and three- dimensional conditions. A brief review of the linear strain gradient elastic theory of Mindlin and its simplifications, especially the theory with just one constant (internal length) in addition to the two classical elastic moduli, is provided. The importance of this theory in successfully modeling microstructural effects on the structural response under both static and dynamic conditions is clearly described. The boundary element formulation of static and… More >

  • Open Access

    ARTICLE

    Simulation of Sloshing Effect on Vessel Motions by Using MPS (Moving Particle Simulation)

    K.S. Kim1, B.H. Lee2, M.H. Kim1, J.C. Park3

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 201-222, 2011, DOI:10.3970/cmes.2011.079.201

    Abstract The coupling and interactions between vessel motion and inner-tank sloshing are investigated by a potential-CFD (Computational Fluid Dynamics) hybrid method in time domain. Potential-theory-based 3D diffraction/radiation panel program is used to obtain the hydrodynamic coefficients and wave forces for the simulation of vessel motion in time domain. The liquid sloshing in tanks is simulated in time domain by using the improved Moving Particle Simulation (PNU-MPS) method and it is validated through comparison against sloshing experiments. The calculated sloshing tank forces and moments are applied to the vessel-motion simulation as excitation forces and moments. The updated ship motion, which is influenced… More >

  • Open Access

    ARTICLE

    Probabilistic Dynamic Analysis of Vehicle-Bridge Interaction System with Uncertain Parameters

    N. Liu,1,W. Gao 1, C.M. Song1, N. Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.72, No.2, pp. 79-102, 2011, DOI:10.3970/cmes.2011.072.079

    Abstract This paper presents the probabilistic dynamic analysis of vehicle-bridge interaction systems. The bridge's and vehicle's parameters are considered as random variables as well as the road surface roughness is modeled as random process. A two-degree-of-freedom spring-mass system is used to represent a moving vehicle and the bridge is modeled as an Euler-Bernoulli beam. From the equation of motion for the vehicle-bridge coupling system, the expressions for mean value and standard deviation of bridge response are developed by using the random variable's functional moment method. The effects of the individual system parameters and the road surface roughness on the bridge response… More >

  • Open Access

    ARTICLE

    A Time-Domain Meshless Local Petrov-Galerkin Formulation for the Dynamic Analysis of Nonlinear Porous Media

    Delfim Soares Jr.1

    CMES-Computer Modeling in Engineering & Sciences, Vol.66, No.3, pp. 227-248, 2010, DOI:10.3970/cmes.2010.066.227

    Abstract In this work, a meshless method based on the local Petrov-Galerkin approach is proposed for the solution of pore-dynamic problems considering elastic and elastoplastic materials. Formulations adopting the Heaviside step function as the test functions in the local weak form are considered. The moving least-square method is used for the approximation of physical quantities in the local integral equations. After spatial discretization is carried out, a nonlinear system of time-domain ordinary differential equations is obtained. This system is solved by Newmark/Newton-Raphson techniques. The present work is based on the u-p formulation and the incognita fields of the coupled analysis in… More >

  • Open Access

    ARTICLE

    A 3D Numerical Model for a Flexible Fiber Motion in Compressible Swirling Airflow

    Hui-Fen Guo1,2, Bin-Gang Xu1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.61, No.3, pp. 201-222, 2010, DOI:10.3970/cmes.2010.061.201

    Abstract A numerical method is developed for modeling the dynamics of a flexible fiber immersed in a compressible swirling flow. The modeling approach is based on combining an Eulerian finite volume formulation for the fluid flow and a Lagrangian small-deformation formulation for the dynamics of the fiber. The fiber is modeled as a chain of beads connected through mass-less rods. The bending and twisting deformation of the fiber are represented by the displacements of the successive beads. A computational strategy is proposed for the computation of the fluid parameters at the center of discrete fiber sections. To deal with the fiber-wall… More >

  • Open Access

    ARTICLE

    Dynamic Analysis of Porous Media Considering Unequal Phase Discretization by Meshless Local Petrov-Galerkin Formulations

    Delfim Soares Jr.1

    CMES-Computer Modeling in Engineering & Sciences, Vol.61, No.2, pp. 177-200, 2010, DOI:10.3970/cmes.2010.061.177

    Abstract In this work, meshless methods based on the local Petrov-Galerkin approach are employed for the time-domain dynamic analysis of porous media. For the spatial discretization of the pore-dynamic model, MLPG formulations adopting Gaussian weight functions as test functions are considered, as well as the moving least square method is used to approximate the incognita fields. For time discretization, the generalized Newmark method is adopted. The present work is based on the u-p formulation and the incognita fields of the coupled analysis in focus are the solid skeleton displacements and the interstitial fluid pore pressures. Independent spatial discretization is considered for… More >

Displaying 31-40 on page 4 of 58. Per Page