Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access


    Sub-Homogeneous Peridynamic Model for Fracture and Failure Analysis of Roadway Surrounding Rock

    Shijun Zhao1, Qing Zhang2, Yusong Miao1, Weizhao Zhang3, Xinbo Zhao1, Wei Xu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3167-3187, 2024, DOI:10.32604/cmes.2023.045015

    Abstract The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity. To address these complexities, this study employs non-local Peridynamics (PD) theory and reconstructs the kernel function to represent accurately the spatial decline of long-range force. Additionally, modifications to the traditional bond-based PD model are made. By considering the micro-structure of coal-rock materials within a uniform discrete model, heterogeneity characterized by bond random pre-breaking is introduced. This approach facilitates the proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity, rendering the PD model suitable for analyzing the deformation and failure of heterogeneous layered… More >

  • Open Access


    A Modified Rate-Dependent Peridynamic Model with Rotation Effect for Dynamic Mechanical Behavior of Ceramic Materials

    Yaxun Liu1,2, Lisheng Liu1,2,*, Hai Mei1,2, Qiwen Liu1,2, Xin Lai1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09007

    Abstract As a mathematical expression of the dynamic mechanical behavior, the constitutive model plays an indispensable role in numerical simulations of ceramic materials. The current bond-based peridynamic constitutive models can accurately describe the dynamic mechanical behavior of partial ceramic materials under impact loading, however, the predicted value of the Poisson’s ratio is 0.25, which is not true for most of the known ceramic materials. Herein, based on the existing bond-based peridynamic constitutive model, the current study utilizes the description of tangential bond force and considers the influence of bond force on rotation to accurately predict the Poisson's ratio of different types… More >

  • Open Access


    Use of Statistical Tools for Comparison between Different Analytical and Semi-Empirical Models of the Bleve Fireball

    Abderraouf Guelzim1,2,*, Baraka Achraf Chakir3, Aziz Ettahir1, Anas Mbarki1,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 125-140, 2023, DOI:10.32604/fhmt.2023.041832

    Abstract The Bleve is an explosion involving both the rapid vaporization of liquid and the rapid expansion of vapor in a vessel. The loss of containment results in a large fireball if the stored chemical is flammable. In order to predict the damage generated by a Bleve, several authors propose analytical or semi-empirical correlations, which consist in predicting the diameter and the lifetime of the fireballs according to the quantity of fuel. These models are based on previous experience, which makes their validity arbitrary in relation to the initial conditions and the nature of the product concerned. The article delves into… More > Graphic Abstract

    Use of Statistical Tools for Comparison between Different Analytical and Semi-Empirical Models of the Bleve Fireball

  • Open Access


    Dynamic Modeling and Sensitivity Analysis for an MEA-Based CO2 Capture Absorber

    Hongwei Guan1, Lingjian Ye2,3,*, Yurun Wang2, Feifan Shen4, Yuchen He3

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3535-3550, 2023, DOI:10.32604/iasc.2023.036399

    Abstract The absorber is the key unit in the post-combustion monoethanolamine (MEA)-based carbon dioxide (CO2) capture process. A rate-based dynamic model for the absorber is developed and validated using steady-state experimental data reported in open literature. Sensitivity analysis is performed with respect to important model parameters associated with the reaction, mass transport and physical property relationships. Then, a singular value decomposition (SVD)-based subspace parameter estimation method is proposed to improve the model accuracy. Finally, dynamic simulations are carried out to investigate the effects of the feed rate of lean MEA solution and the flue inlet conditions. Simulation results indicate that the… More >

  • Open Access


    Research on Mixed Logic Dynamic Modeling and Finite Control Set Model Predictive Control of Multi-Inverter Parallel System

    Xiaojuan Lu, Mengqiao Chen, Qingbo Zhang*

    Energy Engineering, Vol.120, No.3, pp. 649-664, 2023, DOI:10.32604/ee.2023.025065

    Abstract Parallel connection of multiple inverters is an important means to solve the expansion, reserve and protection of distributed power generation, such as photovoltaics. In view of the shortcomings of traditional droop control methods such as weak anti-interference ability, low tracking accuracy of inverter output voltage and serious circulation phenomenon, a finite control set model predictive control (FCS-MPC) strategy of microgrid multi-inverter parallel system based on Mixed Logical Dynamical (MLD) modeling is proposed. Firstly, the MLD modeling method is introduced logical variables, combining discrete events and continuous events to form an overall differential equation, which makes the modeling more accurate. Then… More > Graphic Abstract

    Research on Mixed Logic Dynamic Modeling and Finite Control Set Model Predictive Control of Multi-Inverter Parallel System

  • Open Access


    Indirect Vector Control of Linear Induction Motors Using Space Vector Pulse Width Modulation

    Arjmand Khaliq1, Syed Abdul Rahman Kashif1, Fahad Ahmad2, Muhammad Anwar3,*, Qaisar Shaheen4, Rizwan Akhtar5, Muhammad Arif Shah5, Abdelzahir Abdelmaboud6

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6263-6287, 2023, DOI:10.32604/cmc.2023.033027

    Abstract Vector control schemes have recently been used to drive linear induction motors (LIM) in high-performance applications. This trend promotes the development of precise and efficient control schemes for individual motors. This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation (SVPWM) inverters. The framework under consideration is developed in four stages. To begin, MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamic model. The research presents a modified SVPWM inverter control scheme. By tuning the proportional-integral (PI) controller with a transfer function, optimized values for… More >

  • Open Access


    Underconstrained Cable-Driven Parallel Suspension System of Virtual Flight Test Model in Wind Tunnel

    Huisong Wu, Kaichun Zeng, Li Yu, Yan Li, Xiping Kou*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 395-416, 2023, DOI:10.32604/cmes.2022.021650

    Abstract An underconstrained cable-driven parallel robot (CDPR) suspension system was designed for a virtual flight testing (VFT) model. This mechanism includes two identical upper and lower kinematic chains, each of which comprises a cylindrical pair, rotating pair, and cable parallelogram. The model is pulled via two cables at the top and bottom and fixed by a yaw turntable, which can realize free coupling and decoupling with three rotational degrees of freedom of the model. First, the underconstrained CDPR suspension system of the VFT model was designed according to the mechanics theory, the degrees of freedom were verified, and the support platform… More >

  • Open Access


    Implementation of OpenMP Parallelization of Rate-Dependent Ceramic Peridynamic Model

    Haoran Zhang1, Yaxun Liu2, Lisheng Liu2,*, Xin Lai2,*, Qiwen Liu2, Hai Mei2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.1, pp. 195-217, 2022, DOI:10.32604/cmes.2022.020495

    Abstract A rate-dependent peridynamic ceramic model, considering the brittle tensile response, compressive plastic softening and strain-rate dependence, can accurately represent the dynamic response and crack propagation of ceramic materials. However, it also considers the strain-rate dependence and damage accumulation caused by compressive plastic softening during the compression stage, requiring more computational resources for the bond force evaluation and damage evolution. Herein, the OpenMP parallel optimization of the rate-dependent peridynamic ceramic model is investigated. Also, the modules that compute the interactions between material points and update damage index are vectorized and parallelized. Moreover, the numerical examples are carried out to simulate the… More >

  • Open Access


    Peridynamic Modeling of Brittle Fracture in Mindlin-Reissner Shell Theory

    Sai Li1, Xin Lai2,*, Lisheng Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 715-746, 2022, DOI:10.32604/cmes.2022.018544

    Abstract In this work, we modeled the brittle fracture of shell structure in the framework of Peridynamics Mindlin-Reissener shell theory, in which the shell is described by material points in the mean-plane with its drilling rotation neglected in kinematic assumption. To improve the numerical accuracy, the stress-point method is utilized to eliminate the numerical instability induced by the zero-energy mode and rank-deficiency. The crack surface is represented explicitly by stress points, and a novel general crack criterion is proposed based on that. Instead of the critical stretch used in common peridynamic solid, it is convenient to describe the material failure by… More >

  • Open Access


    Hybrid Energy Storage to Control and Optimize Electric Propulsion Systems

    Sikander Hans1, Smarajit Ghosh1, Suman Bhullar1, Aman Kataria2, Vinod Karar2,*, Divya Agrawal2

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 6183-6200, 2022, DOI:10.32604/cmc.2022.020768

    Abstract Today, ship development has concentrated on electrifying ships in commercial and military applications to improve efficiency, support high-power missile systems and reduce emissions. However, the electric propulsion of the shipboard system experiences torque fluctuation, thrust, and power due to the rotation of the propeller shaft and the motion of waves. In order to meet these challenges, a new solution is needed. This paper explores hybrid energy management systems using the battery and ultracapacitor to control and optimize the electric propulsion system. The battery type and ultracapacitor are ZEBRA and MAXWELL, respectively. The 3-, 4-and 5-blade propellers are considered to produce… More >

Displaying 1-10 on page 1 of 27. Per Page