Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    A Simplified Formulation to Estimate Influence of Gearbox Parameters on the Rattle Noise

    Jidong Zhang1,2,*, Wentao Sui2, Jaspreet Dhupia3

    Sound & Vibration, Vol.53, No.2, pp. 38-49, 2019, DOI:10.32604/sv.2019.04362

    Abstract Occurrence of gear rattle in transmission systems can result in severe vibration and noise, which in applications such as automobiles is an important source of user discomfort. As a result , the reduction of the rattling noise has attracted lot of concerns. The rattling noise level is affected by several gearbox parameters, an understanding of which is essential to prevent the expensive design modifications at later stages of product development. To develop such understanding at the gearbox design stage, this paper analytically evaluates the gear parameters’ effect on the root mean square of the wheel gear acceleration under idling condition,… More >

  • Open Access

    ARTICLE

    Dynamic Modeling and Analysis of Wind Turbine Blade of Piezoelectric Plate Shell

    Yinhu Qiao1,*, Chunyan Zhang1, Jiang Han2

    Sound & Vibration, Vol.53, No.1, pp. 14-24, 2019, DOI:10.32604/sv.2019.04120

    Abstract This paper presents a theoretical analysis of vibration control technology of wind turbine blades made of piezoelectric intelligent structures. The design of the blade structure, which is made from piezoelectric material, is approximately equivalent to a flat shell structure. The differential equations of piezoelectric shallow shells for vibration control are derived based on piezoelectric laminated shell theory. On this basis, wind turbine blades are simplified as elastic piezoelectric laminated shells. We establish the electromechanical coupling system dynamic model of intelligent structures and the dynamic equation of composite piezoelectric flat shell structures by analyzing simulations of active vibration control. Simulation results… More >

  • Open Access

    ARTICLE

    Mechanism Based Pharmacokinetic Pharmacodynamic Modeling of Vildagliptin as an Add-on to Metformin for Subjects with Type 2 Diabetes

    Marziyeh Eftekhari1, Omid Vahidi1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.2, pp. 153-171, 2018, DOI:10.3970/cmes.2018.114.153

    Abstract Various drugs are used to maintain normoglycemia in subjects with type 2 diabetes mellitus. The combination of the drugs from different classes in one single tablet may enhance the effectiveness of the anti-diabetic drugs. To investigate the impact of combining drugs on the glucose regulation of subjects with type 2 diabetes, we propose a pharmacokinetic/pharmacodynamics (PK/PD) mathematical modeling approach for a combination of metformin and vildagliptin drugs. In the proposed modeling approach, two separate PK models representing oral administration of metformin and vildagliptin for diabetic subjects are interconnected to a PD model comprising a detailed compartmental physiological model representing the… More >

  • Open Access

    ABSTRACT

    A Study on Dynamic Modeling Considering Fuel Sloshing for Korean Lunar Module

    Sanghyun Shim, Kwangjin Kim, Sangchul Lee, Sangho Ko, Jayoung Kang, Dongyoung Rew, Gwanghyeok Ju

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 73-74, 2011, DOI:10.3970/icces.2011.019.073

    Abstract The aim of this paper is to discuss the main issues related to modeling and simulation of the Korean lunar module. Lunar module usually consists of a rigid platform, attitude control actuators and a fuel tank. For dynamical modeling, we first assumed the lunar module as a rigid body and derived equations of motion by considering allocation of reaction thrusters and reaction wheel assembly(RWA). Fuel sloshing in lunar module and its influence on attitude dynamics are an important issue in the research field of space technology. In order to include the effect of fuel sloshing on the dynamics, we model… More >

  • Open Access

    ARTICLE

    Dynamic Fracture Analysis for Shale Material by Peridynamic Modelling

    Zhanqi Cheng1, Zhenyu Wang1, Zhongtao Luo2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 509-527, 2019, DOI:10.31614/cmes.2019.04339

    Abstract In this work, a bond-based peridynamics (PD) model was built to analyze the dynamic fracture of shale material. Both the the convergence studies and the result of dynamic crack propagation were presented. As well-known, crack propagation, aggregation, and bifurcation play an critical role in the failure analysis of brittle materials such as shale. The dynamic crack propagation and branching analysis of shale by using the PD method were discussed. Firstly, the valid and accuracy of the PD model for the rock materials was verified by comparing with the existed numerical results. Secondly, we discussed the convergence both with uniform grid… More >

  • Open Access

    ARTICLE

    Iterative Analysis of Pore-Dynamic Models Discretized by Meshless Local Petrov-Galerkin Formulations

    Delfim Soares Jr.1

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.1, pp. 61-82, 2011, DOI:10.3970/cmes.2011.076.061

    Abstract This work proposes an iterative procedure to analyse pore-dynamic models discretized by time-domain Meshless Local Petrov-Galerkin formulations. By considering an iterative procedure based on a successive renew of variables, each phase of the coupled problem in focus can be treated separately, uncoupling the governing equations of the model. Thus, smaller and better conditioned systems of equations are obtained, rendering a more attractive methodology. A relaxation parameter is introduced here in order to improve the efficiency of the iterative procedure and an expression to compute optimal values for the relaxation parameter is discussed. Linear and nonlinear models are focused, highlighting that… More >

  • Open Access

    ARTICLE

    Dynamic Modeling and Analysis of Arch Bridges Using Beam-Arch Segment Assembly

    Wei-Xin Ren1,2,3, Cong-Cong Su1, Wang-Ji Yan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.70, No.1, pp. 67-92, 2010, DOI:10.3970/cmes.2010.070.067

    Abstract A beam-arch segment assembly procedure is presented in this paper for the dynamic modelling and analysis of arch bridges. Such a beam-arch segment assembly is composed of different structural elements of arch bridges such as arch ribs (curved beams), suspenders, girders and floor beams. Based on the energy principle in structural dynamics, the stiffness matrix and mass matrix of such an assembly are formulated. The proposed procedure is then implemented to carry out the free vibration analysis of the Jian concrete filled tubular arch bridge. It is demonstrated that the proposed beam-arch segment assembly procedure is efficient with the advantages… More >

  • Open Access

    ARTICLE

    A Nonlinear Dynamic Model for Periodic Motion of Slender Threadline Structures

    Jinling Long1,2, Bingang Xu1,3, Xiaoming Tao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.72, No.4, pp. 273-298, 2011, DOI:10.3970/cmes.2011.072.273

    Abstract Moving slender threadline structures are widely used in various engineering fields. The dynamics of these systems is sometimes time dependent but in most cases follows a periodic pattern, and slender yarn motion in textile engineering is a typical problem of this category. In the present paper, we propose a nonlinear approach to model the dynamic behavior of slender threadline structures with a real example in the analysis of slender yarn motion in spinning. Moving boundary conditions of yarn are derived and a consequence of the perturbation analysis for the dimensionless governing equations provides the zero order approximate equation of motion… More >

Displaying 21-30 on page 3 of 28. Per Page