Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (35)
  • Open Access

    ARTICLE

    Real Objects Understanding Using 3D Haptic Virtual Reality for E-Learning Education

    Samia Allaoua Chelloug1,*, Hamid Ashfaq2, Suliman A. Alsuhibany3, Mohammad Shorfuzzaman4, Abdulmajeed Alsufyani4, Ahmad Jalal2, Jeongmin Park5

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1607-1624, 2023, DOI:10.32604/cmc.2023.032245 - 22 September 2022

    Abstract In the past two decades, there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification. The major research areas of this field include object detection and object recognition. Moreover, wireless communication technologies are presently adopted and they have impacted the way of education that has been changed. There are different phases of changes in the traditional system. Perception of three-dimensional (3D) from two-dimensional (2D) image is one of the demanding tasks. Because human can easily perceive but making 3D using software will take… More >

  • Open Access

    ARTICLE

    Intelligent Energy Consumption For Smart Homes Using Fused Machine-Learning Technique

    Hanadi AlZaabi1, Khaled Shaalan1, Taher M. Ghazal2,3,*, Muhammad A. Khan4,5, Sagheer Abbas6, Beenu Mago7, Mohsen A. A. Tomh6, Munir Ahmad6

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2261-2278, 2023, DOI:10.32604/cmc.2023.031834 - 22 September 2022

    Abstract Energy is essential to practically all exercises and is imperative for the development of personal satisfaction. So, valuable energy has been in great demand for many years, especially for using smart homes and structures, as individuals quickly improve their way of life depending on current innovations. However, there is a shortage of energy, as the energy required is higher than that produced. Many new plans are being designed to meet the consumer’s energy requirements. In many regions, energy utilization in the housing area is 30%–40%. The growth of smart homes has raised the requirement for… More >

  • Open Access

    ARTICLE

    An Effective Machine-Learning Based Feature Extraction/Recognition Model for Fetal Heart Defect Detection from 2D Ultrasonic Imageries

    Bingzheng Wu1, Peizhong Liu1, Huiling Wu2, Shunlan Liu2, Shaozheng He2, Guorong Lv2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1069-1089, 2023, DOI:10.32604/cmes.2022.020870 - 31 August 2022

    Abstract Congenital heart defect, accounting for about 30% of congenital defects, is the most common one. Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns. In Fetal and Neonatal Cardiology, medical imaging technology (2D ultrasonic, MRI) has been proved to be helpful to detect congenital defects of the fetal heart and assists sonographers in prenatal diagnosis. It is a highly complex task to recognize 2D fetal heart ultrasonic standard plane (FHUSP) manually. Compared with manual identification, automatic identification through artificial intelligence can save a lot of time, ensure the efficiency… More >

  • Open Access

    ARTICLE

    Rider Optimization Algorithm Based Optimal Cloud Server Selection in E-Learning

    R. Soundhara Raja Pandian*, C. Christopher Columbus

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1749-1762, 2023, DOI:10.32604/csse.2023.028014 - 15 June 2022

    Abstract Currently, e-learning is one of the most prevalent educational methods because of its need in today’s world. Virtual classrooms and web-based learning are becoming the new method of teaching remotely. The students experience a lack of access to resources commonly the educational material. In remote locations, educational institutions face significant challenges in accessing various web-based materials due to bandwidth and network infrastructure limitations. The objective of this study is to demonstrate an optimization and queueing technique for allocating optimal servers and slots for users to access cloud-based e-learning applications. The proposed method provides the optimization… More >

  • Open Access

    ARTICLE

    Student’s Health Exercise Recognition Tool for E-Learning Education

    Tamara al Shloul1, Madiha Javeed2, Munkhjargal Gochoo3, Suliman A. Alsuhibany4, Yazeed Yasin Ghadi5, Ahmad Jalal2, Jeongmin Park6,*

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 149-161, 2023, DOI:10.32604/iasc.2023.026051 - 06 June 2022

    Abstract Due to the recently increased requirements of e-learning systems, multiple educational institutes such as kindergarten have transformed their learning towards virtual education. Automated student health exercise is a difficult task but an important one due to the physical education needs especially in young learners. The proposed system focuses on the necessary implementation of student health exercise recognition (SHER) using a modified Quaternion-based filter for inertial data refining and data fusion as the pre-processing steps. Further, cleansed data has been segmented using an overlapping windowing approach followed by patterns identification in the form of static and More >

  • Open Access

    ARTICLE

    Body Worn Sensors for Health Gaming and e-Learning in Virtual Reality

    Mir Mushhood Afsar1, Shizza Saqib1, Yazeed Yasin Ghadi2, Suliman A. Alsuhibany3, Ahmad Jalal1, Jeongmin Park4,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4763-4777, 2022, DOI:10.32604/cmc.2022.028618 - 28 July 2022

    Abstract Virtual reality is an emerging field in the whole world. The problem faced by people today is that they are more indulged in indoor technology rather than outdoor activities. Hence, the proposed system introduces a fitness solution connecting virtual reality with a gaming interface so that an individual can play first-person games. The system proposed in this paper is an efficient and cost-effective solution that can entertain people along with playing outdoor games such as badminton and cricket while sitting in the room. To track the human movement, sensors Micro Processor Unit (MPU6050) are used… More >

  • Open Access

    ARTICLE

    Compared Insights on Machine-Learning Anomaly Detection for Process Control Feature

    Ming Wan1, Quanliang Li1, Jiangyuan Yao2,*, Yan Song3, Yang Liu4, Yuxin Wan5

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4033-4049, 2022, DOI:10.32604/cmc.2022.030895 - 16 June 2022

    Abstract Anomaly detection is becoming increasingly significant in industrial cyber security, and different machine-learning algorithms have been generally acknowledged as various effective intrusion detection engines to successfully identify cyber attacks. However, different machine-learning algorithms may exhibit their own detection effects even if they analyze the same feature samples. As a sequence, after developing one feature generation approach, the most effective and applicable detection engines should be desperately selected by comparing distinct properties of each machine-learning algorithm. Based on process control features generated by directed function transition diagrams, this paper introduces five different machine-learning algorithms as alternative… More >

  • Open Access

    ARTICLE

    Pedestrian Physical Education Training Over Visualization Tool

    Tamara al Shloul1, Israr Akhter2, Suliman A. Alsuhibany3, Yazeed Yasin Ghadi4, Ahmad Jalal2, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2389-2405, 2022, DOI:10.32604/cmc.2022.027007 - 16 June 2022

    Abstract E-learning approaches are one of the most important learning platforms for the learner through electronic equipment. Such study techniques are useful for other groups of learners such as the crowd, pedestrian, sports, transports, communication, emergency services, management systems and education sectors. E-learning is still a challenging domain for researchers and developers to find new trends and advanced tools and methods. Many of them are currently working on this domain to fulfill the requirements of industry and the environment. In this paper, we proposed a method for pedestrian behavior mining of aerial data, using deep flow… More >

  • Open Access

    ARTICLE

    Intelligent Sign Language Recognition System for E-Learning Context

    Muhammad Jamil Hussain1, Ahmad Shaoor1, Suliman A. Alsuhibany2, Yazeed Yasin Ghadi3, Tamara al Shloul4, Ahmad Jalal1, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5327-5343, 2022, DOI:10.32604/cmc.2022.025953 - 21 April 2022

    Abstract In this research work, an efficient sign language recognition tool for e-learning has been proposed with a new type of feature set based on angle and lines. This feature set has the ability to increase the overall performance of machine learning algorithms in an efficient way. The hand gesture recognition based on these features has been implemented for usage in real-time. The feature set used hand landmarks, which were generated using media-pipe (MediaPipe) and open computer vision (openCV) on each frame of the incoming video. The overall algorithm has been tested on two well-known ASL-alphabet More >

  • Open Access

    ARTICLE

    Machine Learning Enabled e-Learner Non-Verbal Behavior Detection in IoT Environment

    Abdelzahir Abdelmaboud1, Fahd N. Al-Wesabi1,2,3, Mesfer Al Duhayyim4, Taiseer Abdalla Elfadil Eisa5, Manar Ahmed Hamza6,*, Mohammed Rizwanullah6, Abu Serwar Zamani6, Radwa Marzouk7

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 679-693, 2022, DOI:10.32604/cmc.2022.024240 - 24 February 2022

    Abstract Internet of Things (IoT) with e-learning is widely employed to collect data from various smart devices and share it with other ones for efficient e-learning applications. At the same time, machine learning (ML) and data mining approaches are presented for accomplishing prediction and classification processes. With this motivation, this study focuses on the design of intelligent machine learning enabled e-learner non-verbal behaviour detection (IML-ELNVBD) in IoT environment. The proposed IML-ELNVBD technique allows the IoT devices such as audio sensors, cameras, etc. which are then connected to the cloud server for further processing. In addition, the More >

Displaying 11-20 on page 2 of 35. Per Page