Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (446)
  • Open Access

    ARTICLE

    Gaussian Process Regression-Based Optimization of Fan-Shaped Film Cooling Holes on Concave Walls

    Yanzhao Yang1, Xiaowen Song2, Zhiying Deng2,*, Jianyang Yu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.074345 - 06 February 2026

    Abstract In this study, a Gaussian Process Regression (GPR) surrogate model coupled with a Bayesian optimization algorithm was employed for the single-objective design optimization of fan-shaped film cooling holes on a concave wall. Fan-shaped holes, commonly used in gas turbines and aerospace applications, flare toward the exit to form a protective cooling film over hot surfaces, enhancing thermal protection compared to cylindrical holes. An initial hole configuration was used to improve adiabatic cooling efficiency. Design variables included the hole injection angle, forward expansion angle, lateral expansion angle, and aperture ratio, while the objective function was the More >

  • Open Access

    ARTICLE

    Physiological and Metabolic Responses of Red Leaf Lettuce (Lactuca sativa L.) under Low Pressure Conditions

    Wonkyu Yi, Jongseok Park*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.073450 - 30 January 2026

    Abstract Understanding plant responses under low-pressure conditions is important for developing closed cultivation systems that simulate space environments. This study aimed to assess the effects of different pressure levels on growth, photosynthesis, and secondary metabolite accumulation in red leaf lettuce (Lactuca sativa L. var. ‘Super Caesar’s Red’). Plants were cultivated for three weeks in sealed chambers under 101 kPa (atmospheric pressure), 66 kPa (moderate low pressure), and 33 kPa (severe low pressure). Growth analysis showed that leaf length and leaf area decreased significantly with reduced pressure, while chlorophyll content and SPAD values increased gradually. Photosynthetic measurements indicated More >

  • Open Access

    REVIEW

    Grey Wolf Optimizer for Cluster-Based Routing in Wireless Sensor Networks: A Methodological Survey

    Mohammad Shokouhifar1,*, Fakhrosadat Fanian2, Mehdi Hosseinzadeh3,4,*, Aseel Smerat5,6, Kamal M. Othman7, Abdulfattah Noorwali7, Esam Y. O. Zafar7

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.073789 - 29 January 2026

    Abstract Wireless Sensor Networks (WSNs) have become foundational in numerous real-world applications, ranging from environmental monitoring and industrial automation to healthcare systems and smart city development. As these networks continue to grow in scale and complexity, the need for energy-efficient, scalable, and robust communication protocols becomes more critical than ever. Metaheuristic algorithms have shown significant promise in addressing these challenges, offering flexible and effective solutions for optimizing WSN performance. Among them, the Grey Wolf Optimizer (GWO) algorithm has attracted growing attention due to its simplicity, fast convergence, and strong global search capabilities. Accordingly, this survey provides… More >

  • Open Access

    ARTICLE

    Modelling and Analysis of Enhanced Power Generation by Recovering Waste Heat from Fallujah White Cement Factory for Clean Energy Sustainability

    Abdulrazzak Akroot1, Kayser Aziz Ameen2, Haitham M. Ibrahim3, Hasanain A. Abdul Wahhab3,*, Miqdam T. Chaichan4

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073702 - 27 January 2026

    Abstract Improving energy efficiency and lowering negative environmental impact through waste heat recovery (WHR) is a critical step toward sustainable cement manufacturing. This study analyzes advanced cogeneration systems for recovering waste heat from the Fallujah White Cement Plant in Iraq. The novelty of this work lies in its direct application and comparative thermodynamic analysis of three distinct cogeneration cycles—the Organic Rankine Cycle, the Single-Flash Steam Cycle, and the Dual-Pressure Steam Cycle—within the Iraqi cement industry, a context that has not been widely studied. The main objective is to evaluate and compare these models to determine the… More > Graphic Abstract

    Modelling and Analysis of Enhanced Power Generation by Recovering Waste Heat from Fallujah White Cement Factory for Clean Energy Sustainability

  • Open Access

    ARTICLE

    Impact of Shockwave on Condensation Efficiency of Supersonic Nozzle during Natural Gas Purification

    Lei Zhao1, Lihui Ma2, Junwen Chen3, Pan Zhang2, Jiang Bian4,*, Dong Sun2

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070290 - 27 January 2026

    Abstract Shock waves in the nozzle during supersonic separation under different conditions can disrupt the flow field’s thermodynamic equilibrium. While it contributes to the recovery of pressure energy, it also leads to the dissipation of mechanical energy. This study aimed to investigate the effects of changes in back pressure on the shock wave position and its subsequent impact on the refrigeration performance of nozzles. A mathematical model for the supersonic gas in a nozzle was established and evaluated via experiments. The results show that when the back pressure is less than 0.2 MPa, no shock wave… More >

  • Open Access

    ARTICLE

    Optimal Working Fluid Selection and Performance Enhancement of ORC Systems for Diesel Engine Waste Heat Recovery

    Zujun Ding, Shuaichao Wu, Chenliang Ji, Xinyu Feng, Yuanyuan Shi, Baolian Liu, Wan Chen, Qiuchan Bai, Hengrui Zhou, Hui Huang, Jie Ji*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.068106 - 27 January 2026

    Abstract In the quest to enhance energy efficiency and reduce environmental impact in the transportation sector, the recovery of waste heat from diesel engines has become a critical area of focus. This study provided an exhaustive thermodynamic analysis optimizing Organic Rankine Cycle (ORC) systems for waste heat recovery from diesel engines. The study assessed the performance of five candidate working fluids—R11, R123, R113, R245fa, and R141b—under a range of operating conditions, specifically varying overheat temperatures and evaporation pressures. The results indicated that the choice of working fluid substantially influences the system’s exergetic efficiency, net output power,… More >

  • Open Access

    ARTICLE

    Active Learning-Driven Optimization of Sulfurization–Selenization Processes in Sb2(S,Se)3 Thin Films for Enhanced Photovoltaic Efficiency

    Yunpeng Wen1,*, Bingyang Ke2, Junrong Ding3

    Chalcogenide Letters, Vol.23, No.1, 2026, DOI:10.32604/cl.2026.076587 - 26 January 2026

    Abstract This study reports an active learning (AL)-guided strategy to optimize the sulfurization–selenization processing conditions of Sb2(S,Se)3 thin-film photovoltaic absorbers for enhanced power conversion efficiency (PCE). By coupling Gaussian process modeling with iterative experimental feedback, we explored 20 targeted annealing conditions across the full compositional spectrum (x = 0–1) and identified an optimal S/(S + Se) ratio of 0.40 (x = 0.60), which yielded a band gap (Eg) of ~1.34 eV, close to the theoretical Shockley–Queisser optimum. The optimized process employed a controlled two-step 420°C anneal with sequential H2Se→H2S exposure, which produced large plate-like grains (300–500 nm)… More >

  • Open Access

    ARTICLE

    Engineering and Tuning of Absorber Layer Properties for High-Efficiency SnS-Based Solar Cells: A SCAPS-1D Simulation Study

    Abla Guechi1, Djohra Dekhil2, Abdelhak Nouri2,*

    Chalcogenide Letters, Vol.23, No.1, 2026, DOI:10.32604/cl.2026.076586 - 26 January 2026

    Abstract This work uses numerical modeling in SCAPS-1D to examine the efficiency analysis of a solar cell based on SnS. The power conversion efficiency (PCE) is limited to 24.5% because of incomplete photon absorption in the absorber layer (SnS) and carrier recombination. To increase the absorption window, facilitate charge mobility, and suppress bulk recombination at the rear contact, the absorbent film was divided up into three sublayers with graded band gaps of 1.1 eV, 1.2 eV, and 1.3 eV. Furthermore, the sublayers’ linear gradient doping improved charge collection while simultaneously lowering recombination at the interface. A… More >

  • Open Access

    ARTICLE

    A Hybrid Approach to Software Testing Efficiency: Stacked Ensembles and Deep Q-Learning for Test Case Prioritization and Ranking

    Anis Zarrad1, Thomas Armstrong2, Jaber Jemai3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072768 - 12 January 2026

    Abstract Test case prioritization and ranking play a crucial role in software testing by improving fault detection efficiency and ensuring software reliability. While prioritization selects the most relevant test cases for optimal coverage, ranking further refines their execution order to detect critical faults earlier. This study investigates machine learning techniques to enhance both prioritization and ranking, contributing to more effective and efficient testing processes. We first employ advanced feature engineering alongside ensemble models, including Gradient Boosted, Support Vector Machines, Random Forests, and Naive Bayes classifiers to optimize test case prioritization, achieving an accuracy score of 0.98847More >

  • Open Access

    ARTICLE

    Enhancing IoT-Enabled Electric Vehicle Efficiency: Smart Charging Station and Battery Management Solution

    Supriya Wadekar1,*, Shailendra Mittal1, Ganesh Wakte2, Rajshree Shinde2

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.071761 - 27 December 2025

    Abstract Rapid evolutions of the Internet of Electric Vehicles (IoEVs) are reshaping and modernizing transport systems, yet challenges remain in energy efficiency, better battery aging, and grid stability. Typical charging methods allow for EVs to be charged without thought being given to the condition of the battery or the grid demand, thus increasing energy costs and battery aging. This study proposes a smart charging station with an AI-powered Battery Management System (BMS), developed and simulated in MATLAB/Simulink, to increase optimality in energy flow, battery health, and impractical scheduling within the IoEV environment. The system operates through… More >

Displaying 1-10 on page 1 of 446. Per Page