Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (891)
  • Open Access

    ARTICLE

    Energy Aware Task Scheduling of IoT Application Using a Hybrid Metaheuristic Algorithm in Cloud Computing

    Ahmed Awad Mohamed1, Eslam Abdelhakim Seyam2,*, Ahmed R. Elsaeed3, Laith Abualigah4, Aseel Smerat5,6, Ahmed M. AbdelMouty7, Hosam E. Refaat8

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073171 - 12 January 2026

    Abstract In recent years, fog computing has become an important environment for dealing with the Internet of Things. Fog computing was developed to handle large-scale big data by scheduling tasks via cloud computing. Task scheduling is crucial for efficiently handling IoT user requests, thereby improving system performance, cost, and energy consumption across nodes in cloud computing. With the large amount of data and user requests, achieving the optimal solution to the task scheduling problem is challenging, particularly in terms of cost and energy efficiency. In this paper, we develop novel strategies to save energy consumption across… More >

  • Open Access

    ARTICLE

    DyLoRA-TAD: Dynamic Low-Rank Adapter for End-to-End Temporal Action Detection

    Jixin Wu1,2, Mingtao Zhou2,3, Di Wu2,3, Wenqi Ren4, Jiatian Mei2,3, Shu Zhang1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072964 - 12 January 2026

    Abstract End-to-end Temporal Action Detection (TAD) has achieved remarkable progress in recent years, driven by innovations in model architectures and the emergence of Video Foundation Models (VFMs). However, existing TAD methods that perform full fine-tuning of pretrained video models often incur substantial computational costs, which become particularly pronounced when processing long video sequences. Moreover, the need for precise temporal boundary annotations makes data labeling extremely expensive. In low-resource settings where annotated samples are scarce, direct fine-tuning tends to cause overfitting. To address these challenges, we introduce Dynamic Low-Rank Adapter (DyLoRA), a lightweight fine-tuning framework tailored specifically… More >

  • Open Access

    ARTICLE

    FedCCM: Communication-Efficient Federated Learning via Clustered Client Momentum in Non-IID Settings

    Hang Wen1,2, Kai Zeng1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072909 - 12 January 2026

    Abstract Federated learning often experiences slow and unstable convergence due to edge-side data heterogeneity. This problem becomes more severe when edge participation rate is low, as the information collected from different edge devices varies significantly. As a result, communication overhead increases, which further slows down the convergence process. To address this challenge, we propose a simple yet effective federated learning framework that improves consistency among edge devices. The core idea is clusters the lookahead gradients collected from edge devices on the cloud server to obtain personalized momentum for steering local updates. In parallel, a global momentum… More > Graphic Abstract

    FedCCM: Communication-Efficient Federated Learning via Clustered Client Momentum in Non-IID Settings

  • Open Access

    ARTICLE

    EARAS: An Efficient, Anonymous, and Robust Authentication Scheme for Smart Homes

    Muntaham Inaam Hashmi1, Muhammad Ayaz Khan2, Khwaja Mansoor ul Hassan1, Suliman A. Alsuhibany3,*, Ainur Abduvalova4, Asfandyar Khan5

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071452 - 12 January 2026

    Abstract Cyber-criminals target smart connected devices for spyware distribution and security breaches, but existing Internet of Things (IoT) security standards are insufficient. Major IoT industry players prioritize market share over security, leading to insecure smart products. Traditional host-based protection solutions are less effective due to limited resources. Overcoming these challenges and enhancing the security of IoT Devices requires a security design at the network level that uses lightweight cryptographic parameters. In order to handle control, administration, and security concerns in traditional networking, the Gateway Node offers a contemporary networking architecture. By managing all network-level computations and… More >

  • Open Access

    ARTICLE

    RE-UKAN: A Medical Image Segmentation Network Based on Residual Network and Efficient Local Attention

    Bo Li, Jie Jia*, Peiwen Tan, Xinyan Chen, Dongjin Li

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071186 - 12 January 2026

    Abstract Medical image segmentation is of critical importance in the domain of contemporary medical imaging. However, U-Net and its variants exhibit limitations in capturing complex nonlinear patterns and global contextual information. Although the subsequent U-KAN model enhances nonlinear representation capabilities, it still faces challenges such as gradient vanishing during deep network training and spatial detail loss during feature downsampling, resulting in insufficient segmentation accuracy for edge structures and minute lesions. To address these challenges, this paper proposes the RE-UKAN model, which innovatively improves upon U-KAN. Firstly, a residual network is introduced into the encoder to effectively… More >

  • Open Access

    ARTICLE

    Enhanced Thermal Performance of a Shell and Coil Tube Heat Exchanger Using Fins and Slots

    Najiba Hasan Hamad1,*, Ranj Sirwan Abdullah2, Ahmed Mohammed Adham2

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.073377 - 27 December 2025

    Abstract Coiled tube heat exchangers are widely preferred in shell structures due to their superior heat transfer performance, driven by favorable flow characteristics. This study investigates the effect of modifying coil and shell configurations on heat transfer efficiency. Two key enhancements were examined: adding fins to the outer coil surface and integrating longitudinal slots within a hollowed shell. These modifications promote turbulence and extend heat transfer duration, thereby improving performance. However, they also introduce challenges, including increased pressure loss and manufacturing complexity. Numerical simulations were conducted using ANSYS Fluent 2024R1 under identical boundary conditions. With a… More > Graphic Abstract

    Enhanced Thermal Performance of a Shell and Coil Tube Heat Exchanger Using Fins and Slots

  • Open Access

    ARTICLE

    Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning

    Jin Lin1,*, Bin Yu2, Chao Chen1, Jiezhen Cai1, Yifan Wu2, Cunping Wang3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069310 - 27 December 2025

    Abstract With the increasing integration of renewable energy, microgrids are increasingly facing stability challenges, primarily due to the lack of inherent inertia in inverter-dominated systems, which is traditionally provided by synchronous generators. To address this critical issue, Virtual Synchronous Generator (VSG) technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators. To enhance the operational efficiency of virtual synchronous generators (VSGs), this study employs small-signal modeling analysis, root locus methods, and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency… More > Graphic Abstract

    Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning

  • Open Access

    ARTICLE

    State Space Guided Spatio-Temporal Network for Efficient Long-Term Traffic Prediction

    Guangyu Huo, Chang Su, Xiaoyu Zhang*, Xiaohui Cui, Lizhong Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.072147 - 09 December 2025

    Abstract Long-term traffic flow prediction is a crucial component of intelligent transportation systems within intelligent networks, requiring predictive models that balance accuracy with low-latency and lightweight computation to optimize traffic management and enhance urban mobility and sustainability. However, traditional predictive models struggle to capture long-term temporal dependencies and are computationally intensive, limiting their practicality in real-time. Moreover, many approaches overlook the periodic characteristics inherent in traffic data, further impacting performance. To address these challenges, we introduce ST-MambaGCN, a State-Space-Based Spatio-Temporal Graph Convolution Network. Unlike conventional models, ST-MambaGCN replaces the temporal attention layer with Mamba, a state-space More >

  • Open Access

    ARTICLE

    Dynamic Integration of Q-Learning and A-APF for Efficient Path Planning in Complex Underground Mining Environments

    Chang Su, Liangliang Zhao*, Dongbing Xiang

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-24, 2026, DOI:10.32604/cmc.2025.071319 - 09 December 2025

    Abstract To address low learning efficiency and inadequate path safety in spraying robot navigation within complex obstacle-rich environments—with dense, dynamic, unpredictable obstacles challenging conventional methods—this paper proposes a hybrid algorithm integrating Q-learning and improved A*-Artificial Potential Field (A-APF). Centered on the Q-learning framework, the algorithm leverages safety-oriented guidance generated by A-APF and employs a dynamic coordination mechanism that adaptively balances exploration and exploitation. The proposed system comprises four core modules: (1) an environment modeling module that constructs grid-based obstacle maps; (2) an A-APF module that combines heuristic search from A* algorithm with repulsive force strategies from… More >

  • Open Access

    ARTICLE

    Efficient Video Emotion Recognition via Multi-Scale Region-Aware Convolution and Temporal Interaction Sampling

    Xiaorui Zhang1,2,*, Chunlin Yuan3, Wei Sun4, Ting Wang5

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.071043 - 09 December 2025

    Abstract Video emotion recognition is widely used due to its alignment with the temporal characteristics of human emotional expression, but existing models have significant shortcomings. On the one hand, Transformer multi-head self-attention modeling of global temporal dependency has problems of high computational overhead and feature similarity. On the other hand, fixed-size convolution kernels are often used, which have weak perception ability for emotional regions of different scales. Therefore, this paper proposes a video emotion recognition model that combines multi-scale region-aware convolution with temporal interactive sampling. In terms of space, multi-branch large-kernel stripe convolution is used to More >

Displaying 1-10 on page 1 of 891. Per Page