Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (598)
  • Open Access

    ARTICLE

    Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs

    Mohamed Ezz1, Meshrif Alruily1,*, Ayman Mohamed Mostafa2,*, Alaa S. Alaerjan1, Bader Aldughayfiq2, Hisham Allahem2, Abdulaziz Shehab2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-28, 2026, DOI:10.32604/cmc.2025.063189 - 10 November 2025

    Abstract Automated essay scoring (AES) systems have gained significant importance in educational settings, offering a scalable, efficient, and objective method for evaluating student essays. However, developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology, diglossia, and the scarcity of annotated datasets. This paper presents a hybrid approach to Arabic AES by combining text-based, vector-based, and embedding-based similarity measures to improve essay scoring accuracy while minimizing the training data required. Using a large Arabic essay dataset categorized into thematic groups, the study conducted four experiments to evaluate the impact of feature selection,… More >

  • Open Access

    REVIEW

    Advances in Grapevine Breeding: Integrating Traditional Selection, Genomic Tools, and Gene Editing Technologies

    Sandra Pérez-Álvarez1,*, Eduardo Fidel Héctor-Ardisana2, Eduardo Sandoval Castro3, Erick H. Ochoa-Chaparro4, Luisa Patricia Uranga-Valencia1

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 3749-3803, 2025, DOI:10.32604/phyton.2025.072135 - 29 December 2025

    Abstract Grape (Vitis vinifera L.) cultivation has progressed from early domestication and clonal propagation to modern, data-driven breeding that is reshaping viticulture and wine quality. Yet climatic and biotic constraints still impose heavy losses—downy mildew can reduce yields by ≈75% in humid regions and gray mold by 20–50%—sustaining the need for resistant cultivars. Producer selection, interspecific crossing, and formal improvement programs have generated ~10,000 varieties, although only a few dozen dominate global acreage. Conventional breeding has delivered fungus-resistant “PIWI” cultivars that retain ≥85% of the V. vinifera genome; in Austria, national PIWI varieties are gaining acceptance for combined… More >

  • Open Access

    ARTICLE

    AutoSHARC: Feedback Driven Explainable Intrusion Detection with SHAP-Guided Post-Hoc Retraining for QoS Sensitive IoT Networks

    Muhammad Saad Farooqui1, Aizaz Ahmad Khattak2, Bakri Hossain Awaji3, Nazik Alturki4, Noha Alnazzawi5, Muhammad Hanif6,*, Muhammad Shahbaz Khan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4395-4439, 2025, DOI:10.32604/cmes.2025.072023 - 23 December 2025

    Abstract Quality of Service (QoS) assurance in programmable IoT and 5G networks is increasingly threatened by cyberattacks such as Distributed Denial of Service (DDoS), spoofing, and botnet intrusions. This paper presents AutoSHARC, a feedback-driven, explainable intrusion detection framework that integrates Boruta and LightGBM–SHAP feature selection with a lightweight CNN–Attention–GRU classifier. AutoSHARC employs a two-stage feature selection pipeline to identify the most informative features from high-dimensional IoT traffic and reduces 46 features to 30 highly informative ones, followed by post-hoc SHAP-guided retraining to refine feature importance, forming a feedback loop where only the most impactful attributes are More >

  • Open Access

    ARTICLE

    EventTracker Based Regression Prediction with Application to Composite Sensitive Microsensor Parameter Prediction

    Hongrong Wang1,2, Xinjian Li3,4, Xingjing She1, Wenjian Ma1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2039-2055, 2025, DOI:10.32604/cmes.2025.072572 - 26 November 2025

    Abstract In modern complex systems, real-time regression prediction plays a vital role in performance evaluation and risk warning. Nevertheless, existing methods still face challenges in maintaining stability and predictive accuracy under complex conditions. To address these limitations, this study proposes an online prediction approach that integrates event tracking sensitivity analysis with machine learning. Specifically, a real-time event tracking sensitivity analysis method is employed to capture and quantify the impact of key events on system outputs. On this basis, a mutual-information–based self-extraction mechanism is introduced to construct prior weights, which are then incorporated into a LightGBM prediction More >

  • Open Access

    REVIEW

    Is the Barthel index a valid tool for patient selection before urological surgery? A systematic review

    Andrea Panunzio1, Rossella Orlando1, Federico Greco2,3, Giovanni Mazzucato4, Floriana Luigina Rizzo1, Serena Domenica D’Elia1, Antonio Benito Porcaro5, Alessandro Antonelli5, Alessandro Tafuri1,6,*

    Canadian Journal of Urology, Vol.32, No.5, pp. 375-384, 2025, DOI:10.32604/cju.2025.066140 - 30 October 2025

    Abstract Background: The Barthel Index (BI) measures the level of patient independence in activities of daily living. This review aims to summarize current evidence on the use of the BI in urology, highlighting its potential as a tool for assessing patients prior to surgery. Materials and methods: A comprehensive search of PubMed, Scopus, and Web of Science databases was conducted for studies evaluating the BI in patients undergoing urologic surgery, following Systematic Review and Meta-analyses (PRISMA) guidelines. The BI was investigated both as a descriptor of baseline or postoperative health status and a prognostic indicator. A qualitative… More >

  • Open Access

    ARTICLE

    Optimal Location, Sizing and Technology Selection of STATCOM for Power Loss Minimization and Voltage Profile Using Multiple Optimization Methods

    Hajer Hafaiedh1,2, Adel Mahjoub3, Yahia Saoudi4, Anouar Benamor2, Okba Taouali5,*, Kamel Zidi6, Wad Ghaban6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 571-596, 2025, DOI:10.32604/cmes.2025.071642 - 30 October 2025

    Abstract Several optimization methods, such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), are used to select the most suitable Static Synchronous Compensator (STATCOM) technology for the optimal operation of the power system, as well as to determine its optimal location and size to minimize power losses. An IEEE 14 bus system, integrating three wind turbines based on Squirrel Cage Induction Generators (SCIGs), is used to test the applicability of the proposed algorithms. The results demonstrate that these algorithms are capable of selecting the most appropriate technology while optimally sizing and locating the STATCOM to More >

  • Open Access

    ARTICLE

    Hybrid Meta-Heuristic Feature Selection Model for Network Traffic-Based Intrusion Detection in AIoT

    Seungyeon Baek1,#, Jueun Jeon2,#, Byeonghui Jeong1, Young-Sik Jeong1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1213-1236, 2025, DOI:10.32604/cmes.2025.070679 - 30 October 2025

    Abstract With the advent of the sixth-generation wireless technology, the importance of using artificial intelligence of things (AIoT) devices is increasing to enhance efficiency. As massive volumes of data are collected and stored in these AIoT environments, each device becomes a potential attack target, leading to increased security vulnerabilities. Therefore, intrusion detection studies have been conducted to detect malicious network traffic. However, existing studies have been biased toward conducting in-depth analyses of individual packets to improve accuracy or applying flow-based statistical information to ensure real-time performance. Effectively responding to complex and multifaceted threats in large-scale AIoT… More >

  • Open Access

    ARTICLE

    A Filter-Based Feature Selection Framework to Detect Phishing URLs Using Stacking Ensemble Machine Learning

    Nimra Bari1, Tahir Saleem2, Munam Shah3, Abdulmohsen Algarni4, Asma Patel5,*, Insaf Ullah6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1167-1187, 2025, DOI:10.32604/cmes.2025.070311 - 30 October 2025

    Abstract Today, phishing is an online attack designed to obtain sensitive information such as credit card and bank account numbers, passwords, and usernames. We can find several anti-phishing solutions, such as heuristic detection, virtual similarity detection, black and white lists, and machine learning (ML). However, phishing attempts remain a problem, and establishing an effective anti-phishing strategy is a work in progress. Furthermore, while most anti-phishing solutions achieve the highest levels of accuracy on a given dataset, their methods suffer from an increased number of false positives. These methods are ineffective against zero-hour attacks. Phishing sites with… More >

  • Open Access

    ARTICLE

    Risk Indicator Identification for Coronary Heart Disease via Multi-Angle Integrated Measurements and Sequential Backward Selection

    Hui Qi1, Jingyi Lian2, Congjun Rao2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 995-1028, 2025, DOI:10.32604/cmes.2025.069722 - 30 October 2025

    Abstract For the past few years, the prevalence of cardiovascular disease has been showing a year-on-year increase, with a death rate of 2/5. Coronary heart disease (CHD) rates have increased 41% since 1990, which is the number one disease endangering human health in the world today. The risk indicators of CHD are complicated, so selecting effective methods to screen the risk characteristics can make the risk prediction more efficient. In this paper, we present a comprehensive analysis of CHD risk indicators from both data and algorithmic levels, propose a method for CHD risk indicator identification based… More >

  • Open Access

    ARTICLE

    Harnessing TLBO-Enhanced Cheetah Optimizer for Optimal Feature Selection in Cancer Data

    Bibhuprasad Sahu1, Amrutanshu Panigrahi2, Abhilash Pati2, Ashis Kumar Pati3, Janmejaya Mishra4, Naim Ahmad5,*, Salman Arafath Mohammed6, Saurav Mallik7,8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1029-1054, 2025, DOI:10.32604/cmes.2025.069618 - 30 October 2025

    Abstract Metaheuristic optimization methods are iterative search processes that aim to efficiently solve complex optimization problems. These basically find the solution space very efficiently, often without utilizing the gradient information, and are inspired by the bio-inspired and socially motivated heuristics. Metaheuristic optimization algorithms are increasingly applied to complex feature selection problems in high-dimensional medical datasets. Among these, Teaching-Learning-Based optimization (TLBO) has proven effective for continuous design tasks by balancing exploration and exploitation phases. However, its binary version (BTLBO) suffers from limited exploitation ability, often converging prematurely or getting trapped in local optima, particularly when applied to… More >

Displaying 11-20 on page 2 of 598. Per Page