Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Nano-Array Solid Electrode Design for Photoelectrochemical Solar Cells

    W.H. Chen1, C.W. Hong1,2

    CMC-Computers, Materials & Continua, Vol.21, No.2, pp. 147-170, 2011, DOI:10.3970/cmc.2011.021.147

    Abstract Nanorod/nanowell/nanotube arrays are effective nanotechnologies that can increase the performance of a photo-electrochemical solar cell by increasing the reaction area of the working electrode. However, the confined space due to the nano-arrays also tends to decrease the redox ion diffusivity. This paper describes computer modeling on the ionic diffusion of the active species (I-/I3-) among the nano-arrays of the working electrode material (TiO2). A three dimensional periodic boundary molecular dynamics simulation technique is employed to simulate the nano-scale transport phenomenon. Performance improvement tendency can be evaluated from the Butler-Volmer equation. Simulation results reveal that the More >

  • Open Access

    ARTICLE

    Research on Activated Carbon Supercapacitors Electrochemical Properties Based on Improved PSO-BP Neural Network

    Xiaoyi Liang1, Zhen Yang1,2, Xingsheng Gu3, Licheng Ling1

    CMC-Computers, Materials & Continua, Vol.13, No.2, pp. 135-152, 2009, DOI:10.3970/cmc.2009.013.135

    Abstract Supercapacitors, also called electrical double-layer capacitors (EDLCs), occupy a region between batteries and dielectric capacitors on the Ragone plot describing the relation between energy and power. BET specific surface area and specific capacitance are two important electrochemical property parameters for activated carbon EDLCs, which are usually tested by experimental method. However, it is misspent time to repeat lots of experiments for EDLCs' studies. In this investigation, we developed one theoretical model based on improved particle swarm optimization algorithm back propagation (PSO-BP) neural network (NN) to simulate and optimize BET specific surface area and specific capacitance. More >

  • Open Access

    ARTICLE

    Fixed Electrical Charges and Mobile Ions Affect the Measurable Mechano-Electrochemical Properties of Charged-Hydrated Biological Tissues: The Articular Cartilage Paradigm

    Leo Q. Wan1,1, Chester Miller1,1, X. Edward Guo2,2, Van C. Mow1,1,3,3

    Molecular & Cellular Biomechanics, Vol.1, No.1, pp. 81-100, 2004, DOI:10.3970/mcb.2004.001.081

    Abstract The triphasic constitutive law [Lai, Hou and Mow (1991)] has been shown in some special 1D cases to successfully model the deformational and transport behaviors of charged-hydrated, porous-permeable, soft biological tissues, as typified by articular cartilage. Due to nonlinearities and other mathematical complexities of these equations, few problems for the deformation of such materials have ever been solved analytically. Using a perturbation procedure, we have linearized the triphasic equations with respect to a small imposed axial compressive strain, and obtained an equilibrium solution, as well as a short-time boundary layer solution for the mechano- electrochemical… More >

Displaying 11-20 on page 2 of 13. Per Page