Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (963)
  • Open Access

    REVIEW

    Energy Storage Operation Modes in Typical Electricity Market and Their Implications for China

    Junhui Liu1, Yihan Zhang1, Zijian Meng2, Meng Yang1, Yao Lu1, Zhe Chai1, Zhaoyuan Wu2,*

    Energy Engineering, Vol.121, No.9, pp. 2409-2434, 2024, DOI:10.32604/ee.2024.051554 - 19 August 2024

    Abstract As the Chinese government proposes ambitious plans to promote low-carbon transition, energy storage will play a pivotal role in China’s future power system. However, due to the lack of a mature electricity market environment and corresponding mechanisms, current energy storage in China faces problems such as unclear operational models, insufficient cost recovery mechanisms, and a single investment entity, making it difficult to support the rapid development of the energy storage industry. In contrast, European and American countries have already embarked on certain practices in energy storage operation models. Through exploration of key issues such as… More >

  • Open Access

    ARTICLE

    Enhancing Autonomy Capability in Regional Power Grids: A Strategic Planning Approach with Multiple Autonomous Evaluation Indexes

    Jie Ma1, Tong Zhao2, Yuanzhao Hao3, Wenwen Qin2, Haozheng Yu1, Mingxuan Du2, Yuanhong Liu4, Liang Zhang2, Shixia Mu5, Cuiping Li2, Junhui Li2,*

    Energy Engineering, Vol.121, No.9, pp. 2449-2477, 2024, DOI:10.32604/ee.2024.051244 - 19 August 2024

    Abstract After the integration of large-scale Distributed Generation (DG) into the distribution network, the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network, exacerbating the phenomenon of wind and solar power wastage. As a novel power system model, the fundamental concept of Regional Autonomous Power Grids (RAPGs) is to achieve localized management and energy autonomy, thereby facilitating the effective consumption of DGs. Therefore, this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple… More > Graphic Abstract

    Enhancing Autonomy Capability in Regional Power Grids: A Strategic Planning Approach with Multiple Autonomous Evaluation Indexes

  • Open Access

    ARTICLE

    Simulation Study of Diesel Spray Tilt Angle and Ammonia Energy Ratio Effect on Ammonia-Diesel Dual-Fuel Engine Performance

    Zhifeng Zhao, Xuelong Miao*, Xu Chen, Jinbao Zheng, Yage Di, Zhenjie Bao, Zhuo Yang

    Energy Engineering, Vol.121, No.9, pp. 2603-2620, 2024, DOI:10.32604/ee.2024.051237 - 19 August 2024

    Abstract Ammonia-diesel dual fuel (ADDF) engines for transportation applications are an important way to reduce carbon emissions. In order to achieve better combustion of ammonia in diesel engines. A small-bore single-cylinder engine was converted into an ADDF engine with the help of mature computational fluid dynamics (CFD) simulation software to investigate the performance of an engine with a high ammonia energy ratio (AER), and to study the effect of spray tilt angle on ADDF engine. The results showed that the increase in AER reduced nitric oxide (NO) and nitrogen dioxide (NO) emissions but increased nitrous oxide… More >

  • Open Access

    ARTICLE

    A Two-Layer Active Power Optimization and Coordinated Control for Regional Power Grid Partitioning to Promote Distributed Renewable Energy Consumption

    Wentao Li1, Jiantao Liu2, Yudun Li3, Guoxin Ming1, Kaifeng Zhang1, Kun Yuan1,*

    Energy Engineering, Vol.121, No.9, pp. 2479-2503, 2024, DOI:10.32604/ee.2024.050852 - 19 August 2024

    Abstract With the large-scale development and utilization of renewable energy, industrial flexible loads, as a kind of load-side resource with strong regulation ability, provide new opportunities for the research on renewable energy consumption problem in power systems. This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning, aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy, and achieving the safe, stable and economical operation of power grids. Firstly, according to the evaluation index of renewable energy… More >

  • Open Access

    ARTICLE

    Two-Stage Planning of Distributed Power Supply and Energy Storage Capacity Considering Hierarchical Partition Control of Distribution Network with Source-Load-Storage

    Junhui Li1, Yuqing Zhang1, Can Chen2, Xiaoxiao Wang2, Yinchi Shao2, Xingxu Zhu1, Cuiping Li1,*

    Energy Engineering, Vol.121, No.9, pp. 2389-2408, 2024, DOI:10.32604/ee.2024.050239 - 19 August 2024

    Abstract Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network, it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system. This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load. Firstly, an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number… More >

  • Open Access

    ARTICLE

    Characteristics of Rock Mechanics Response and Energy Evolution Regime of Deep Reservoirs in the Bozhong Sag, Bohai Bay Basin

    Suogui Shang1, Kechao Gao1, Qingbin Wang1, Xinghua Zhang1, Pengli Zhou2,3,*, Jianhua Li2,3, Peng Chu2,3

    Energy Engineering, Vol.121, No.9, pp. 2505-2524, 2024, DOI:10.32604/ee.2024.050094 - 19 August 2024

    Abstract Hydraulic fracturing is a mature and effective method for deep oil and gas production, which provides a foundation for deep oil and gas production. One of the key aspects of implementing hydraulic fracturing technology lies in understanding mechanics response characteristics of rocks in deep reservoirs under complex stress conditions. In this work, based on outcrop core samples, high-stress triaxial compression tests were designed to simulate the rock mechanics behavior of deep reservoirs in Bozhong Sag. Additionally, this study analyzes the deformation and damage law for rock under different stress conditions. Wherein, with a particular focus… More >

  • Open Access

    ARTICLE

    Energy Economic Dispatch for Photovoltaic–Storage via Distributed Event-Triggered Surplus Algorithm

    Kaicheng Liu1,3, Chen Liang2, Naiyue Wu1,3, Xiaoyang Dong2, Hui Yu1,*

    Energy Engineering, Vol.121, No.9, pp. 2621-2637, 2024, DOI:10.32604/ee.2024.050001 - 19 August 2024

    Abstract This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices. This method integrates features including photovoltaic (PV) systems, energy storage coupling, varied energy roles, and energy supply and demand dynamics. The system model is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously. To strike a balance between optimality and feasibility, renewable energy resources are modeled with considerations for forecasting errors, Gaussian distribution, and penalty factors. Furthermore, this study introduces a distributed event-triggered surplus algorithm designed to address the More >

  • Open Access

    ARTICLE

    Regenerative Braking Energy Recovery System of Metro Train Based on Dual-Mode Power Management

    Feng Zhao, Xiaotong Zhu*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.121, No.9, pp. 2585-2601, 2024, DOI:10.32604/ee.2024.049762 - 19 August 2024

    Abstract In order to fully utilize the regenerative braking energy of metro trains and stabilize the metro DC traction busbar voltage, a hybrid regenerative braking energy recovery system with a dual-mode power management strategy is proposed. Firstly, the construction of the hybrid regenerative braking energy recovery system is explained. Then, based on the power demand of low-voltage load in metro stations, a dual-mode power management strategy is proposed to allocate the reference power of each system according to the different working conditions, and the control methods of each system are set. Finally, the correctness and effectiveness More > Graphic Abstract

    Regenerative Braking Energy Recovery System of Metro Train Based on Dual-Mode Power Management

  • Open Access

    ARTICLE

    A Traffic-Aware and Cluster-Based Energy Efficient Routing Protocol for IoT-Assisted WSNs

    Hina Gul1, Sana Ullah1, Ki-Il Kim2,*, Farman Ali3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1831-1850, 2024, DOI:10.32604/cmc.2024.052841 - 15 August 2024

    Abstract The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications, such as remote health monitoring, industrial monitoring, transportation, and smart agriculture. Efficient and reliable data routing is one of the major challenges in the Internet of Things network due to the heterogeneity of nodes. This paper presents a traffic-aware, cluster-based, and energy-efficient routing protocol that employs traffic-aware and cluster-based techniques to improve the data delivery in such networks. The proposed protocol divides the network into clusters where optimal cluster heads are selected among super… More >

  • Open Access

    ARTICLE

    EECLP: A Wireless Sensor Networks Energy Efficient Cross-Layer Protocol

    Mohammed Kaddi1,*, Mohammed Omari2, Moamen Alnatoor1

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2611-2631, 2024, DOI:10.32604/cmc.2024.052048 - 15 August 2024

    Abstract Recent advancements in wireless communications have allowed the birth of novel wireless sensor networks (WSN). A sensor network comprises several micro-sensors deployed randomly in an area of interest. A micro-sensor is provided with an energy resource to supply electricity to all of its components. However, the disposed energy resource is limited and battery replacement is generally infeasible. With this restriction, the sensors must conserve energy to prolong their lifetime. Various energy conservation strategies for WSNs have been presented in the literature, from the application to the physical layer. Most of these solutions focus only on… More >

Displaying 21-30 on page 3 of 963. Per Page