Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,106)
  • Open Access

    ARTICLE

    Numerical Evaluation of the Performance Enhancement of S-Shaped Diffuser at the Intake of Gas Turbine by Energy Promoters

    Hussain H. Al-Kayiem1,*, Raed A. Jessam2, Sinan S. Hamdi3, Ali M. Tukkee4,5

    Energy Engineering, Vol.122, No.4, pp. 1311-1335, 2025, DOI:10.32604/ee.2025.061709 - 31 March 2025

    Abstract Size reduction of the gas turbines (GT) by reducing the inlet S-shaped diffuser length increases the power-to-weight ratio. It improves the techno-economic features of the GT by lesser fuel consumption. However, this Length reduction of a bare S-shaped diffuser to an aggressive S-shaped diffuser would risk flow separation and performance reduction of the diffuser and the air intake of the GT. The objective of this research is to propose and assess fitted energy promoters (EPs) to enhance the S-shaped diffuser performance by controlling and modifying the flow in the high bending zone of the diffuser.… More >

  • Open Access

    REVIEW

    Research of Low-Carbon Operation Technologies for PEDF Parks: Review, Prospects, and Challenges

    Ziwen Cai1,2, Yun Zhao1,2, Zongyi Wang1,2, Tonghe Wang3,*, Yunfeng Li1,2, Hao Wang3

    Energy Engineering, Vol.122, No.4, pp. 1221-1248, 2025, DOI:10.32604/ee.2025.061452 - 31 March 2025

    Abstract With the severe challenges brought by global climate change, exploring and developing clean and renewable energy systems to upgrade the energy structure has become an inevitable trend in related research. The comprehensive park systems integrated with photovoltaic, energy storage, direct current, and flexible loads (PEDF) is able to play an important role in promoting energy transformation and achieving sustainable development. In order to fully understand the advantages of PEDF parks in energy conservation and carbon reduction, this paper summarizes existing studies and prospects future research directions on the low-carbon operation of the PEDF park. This… More >

  • Open Access

    ARTICLE

    Advanced Predictive Analytics for Green Energy Systems: An IPSS System Perspective

    Lei Shen1,2, Chutong Zhang2, Yuwei Ge1, Shanyun Gu1, Qiang Gao1, Wei Li1, Jie Ji2,*

    Energy Engineering, Vol.122, No.4, pp. 1581-1602, 2025, DOI:10.32604/ee.2025.061010 - 31 March 2025

    Abstract The rapid development and increased installed capacity of new energy sources such as wind and solar power pose new challenges for power grid fault diagnosis. This paper presents an innovative framework, the Intelligent Power Stability and Scheduling (IPSS) System, which is designed to enhance the safety, stability, and economic efficiency of power systems, particularly those integrated with green energy sources. The IPSS System is distinguished by its integration of a CNN-Transformer predictive model, which leverages the strengths of Convolutional Neural Networks (CNN) for local feature extraction and Transformer architecture for global dependency modeling, offering significant… More > Graphic Abstract

    Advanced Predictive Analytics for Green Energy Systems: An IPSS System Perspective

  • Open Access

    ARTICLE

    Low-Carbon Economic Dispatch Strategy for Integrated Energy Systems under Uncertainty Counting CCS-P2G and Concentrating Solar Power Stations

    Zhihui Feng1, Jun Zhang1, Jun Lu1, Zhongdan Zhang1, Wangwang Bai1, Long Ma1, Haonan Lu2, Jie Lin2,*

    Energy Engineering, Vol.122, No.4, pp. 1531-1560, 2025, DOI:10.32604/ee.2025.060795 - 31 March 2025

    Abstract In the background of the low-carbon transformation of the energy structure, the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy systems (IES) is becoming increasingly obvious. In this case, to promote the low-carbon operation of IES and renewable energy consumption, and to improve the IES anti-interference ability, this paper proposes an IES scheduling strategy that considers CCS-P2G and concentrating solar power (CSP) station. Firstly, CSP station, gas hydrogen doping mode and variable hydrogen doping ratio mode are applied to IES, and combined with… More >

  • Open Access

    ARTICLE

    Online Optimization to Suppress the Grid-Injected Power Deviation of Wind Farms with Battery-Hydrogen Hybrid Energy Storage Systems

    Min Liu1, Qiliang Wu1, Zhixin Li2, Bo Zhao1, Leiqi Zhang1, Junhui Li2, Xingxu Zhu2,*

    Energy Engineering, Vol.122, No.4, pp. 1403-1424, 2025, DOI:10.32604/ee.2025.060256 - 31 March 2025

    Abstract To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms, an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed. First, considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage, an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system. Next, an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with… More >

  • Open Access

    ARTICLE

    Thermo-Economic Performance Comparison between Basic Organic Rankine Cycle and Organic Rankine Cycle with Vapor-Liquid Ejector Driven by Solar Energy

    Lingbao Wang1,2, Zhi Gan2, Zuowei Yang3,*, Huashan Li1,2, Yulie Gong1,2, Xianbiao Bu1,2

    Energy Engineering, Vol.122, No.4, pp. 1443-1468, 2025, DOI:10.32604/ee.2025.060113 - 31 March 2025

    Abstract Amidst the global push for decarbonization, solar-powered Organic Rankine Cycle (SORC) systems are gaining significant attention. The small-scale Organic Rankine Cycle (ORC) systems have enhanced environmental adaptability, improved system flexibility, and achieved diversification of application scenarios. However, the power consumption ratio of the working fluid pump becomes significantly larger relative to the total power output of the system, adversely impacting overall system efficiency. This study introduces an innovative approach by incorporating a vapor-liquid ejector into the ORC system to reduce the pump work consumption within the ORC. The thermo-economic models for both the traditional ORC… More >

  • Open Access

    ARTICLE

    Bilevel Planning of Distribution Networks with Distributed Generation and Energy Storage: A Case Study on the Modified IEEE 33-Bus System

    Haoyuan Li, Lingling Li*

    Energy Engineering, Vol.122, No.4, pp. 1337-1358, 2025, DOI:10.32604/ee.2025.060105 - 31 March 2025

    Abstract Rational distribution network planning optimizes power flow distribution, reduces grid stress, enhances voltage quality, promotes renewable energy utilization, and reduces costs. This study establishes a distribution network planning model incorporating distributed wind turbines (DWT), distributed photovoltaics (DPV), and energy storage systems (ESS). K-means++ is employed to partition the distribution network based on electrical distance. Considering the spatiotemporal correlation of distributed generation (DG) outputs in the same region, a joint output model of DWT and DPV is developed using the Frank-Copula. Due to the model’s high dimensionality, multiple constraints, and mixed-integer characteristics, bilevel programming theory is… More >

  • Open Access

    ARTICLE

    Monthly Reduced Time-Period Scheduling of Thermal Generators and Energy Storage Considering Daily Minimum Chargeable Energy of Energy Storage

    Xingxu Zhu1,*, Shiye Wang1, Gangui Yan1, Junhui Li1, Hongda Dong2, Chenggang Li2

    Energy Engineering, Vol.122, No.4, pp. 1469-1489, 2025, DOI:10.32604/ee.2025.059956 - 31 March 2025

    Abstract To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage, a reduced time-period monthly scheduling model for thermal generators and energy storage, incorporating daily minimum chargeable energy constraints, was developed. Firstly, considering the variations in the frequency of unit start-ups and shutdowns under different levels of net load fluctuation, a method was proposed to reduce decision time periods for unit start-up and shut-down operations. This approach, based on the characteristics of net load fluctuations, minimizes the decision variables of units, thereby simplifying the monthly… More >

  • Open Access

    REVIEW

    Recent Advances in Polymer-Based Photocatalysts for Environmental Remediation and Energy Conversion: A Review

    Surajudeen Sikiru1,*, Yusuf Olanrewaju Busari2,3, John Oluwadamilola Olutoki4, Mohd Muzamir Mahat1, Sanusi Yekinni Kolawole5

    Journal of Polymer Materials, Vol.42, No.1, pp. 1-31, 2025, DOI:10.32604/jpm.2025.058936 - 27 March 2025

    Abstract Photocatalysis is a crucial technique for environmental cleanup and renewable energy generation. Polymer-based photocatalysts have attracted interest due to their adaptability, adjustable chemical characteristics, and enhanced light absorption efficiency. Unlike traditional inorganic photocatalysts, we can optimize polymeric systems to enhance photocatalytic efficiency and yield significant advantages in environmental remediation and energy conversion applications. This study talks about the latest developments in polymer-based photocatalysts and how important they are for cleaning water, breaking down pollutants, and making renewable energy through processes like hydrogen production and CO2 reduction. These materials are proficient in degrading harmful pollutants such as… More >

  • Open Access

    REVIEW

    Progress in the Understanding and Modeling of Cavitation and Related Applications

    Jianying Li1,2,*, Donglai Li1,2, Tiefeng Li1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 445-470, 2025, DOI:10.32604/fdmp.2025.062337 - 01 April 2025

    Abstract Hydrodynamic cavitation, as an efficient technique applied in many physical and chemical treatment methods, has been widely used by various industries and in several technological fields. Relevant generators, designed with specific structures and parameters, can produce cavitation effects, thereby enabling effective treatment and reasonable transformation of substances. This paper reviews the design principles, performance, and practical applications associated with different types of cavitation generators, aiming to provide theoretical support for the optimization of these systems. It systematically analyzes the underpinning mechanisms and the various factors influencing the cavitation phenomena, also conducting a comparative analysis of More > Graphic Abstract

    Progress in the Understanding and Modeling of Cavitation and Related Applications

Displaying 41-50 on page 5 of 1106. Per Page