Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,257)
  • Open Access

    ARTICLE

    P2RX1 Influences the Prognosis of Ph+/Ph-Like ALL through Energy and Calcium Metabolism

    Xiangmei Ye1,2,3, Baoyi Yang4, Xin Zhang5, Luyuan Yang1, Likun Zhang5, Qin Ren1, Xiaobing Li1, Leiguang Feng1, Lanlan Wei3,6,7,*, Peng Song1, Yuqing Ye8, Xin Lian9, Yujuan Gao9, Haidi Tang1, Zhiyu Liu1

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.068814 - 30 December 2025

    Abstract Objectives: Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia and Philadelphia-like B-cell acute lymphoblastic leukemia (Ph+/Ph-like ALL) constitute the majority of relapsed/refractory B-ALL (R/R B-ALL) cases, highlighting an urgent need to discover new therapeutic targets. This study aims to elucidate the mechanisms underlying poor prognosis in Ph+/Ph-like ALL through transcriptome sequencing and functional cytological assays, with the goal of informing new clinical treatment strategies. Results: Transcriptomic analysis of Ph+/Ph-like ALL patients revealed that low expression of P2X Purinoceptor 1 (P2RX1) was associated with unfavorable outcomes. Specifically, patients with poor prognosis and low P2RX1 expression exhibited downregulation of… More >

  • Open Access

    ARTICLE

    Effect of Thermoelectric Cooler Arrangements on Thermal Performance and Energy Saving in Electronic Applications: An Experimental Study

    M. N. Abd-Al Ameer, Iman S. Kareem, Ali A. Ismaeel*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.073437 - 27 December 2025

    Abstract Electrical and electronic devices face significant challenges in heat management due to their compact size and high heat flux, which negatively impact performance and reliability. Conventional cooling methods, such as forced air cooling, often struggle to transfer heat efficiently. In contrast, thermoelectric coolers (TECs) provide an innovative active cooling solution to meet growing thermal management demands. In this research, a refrigerant based on mono ethylene glycol and distilled water was used instead of using gases, in addition to using thermoelectric cooling units instead of using a compressor in traditional refrigeration systems. This study evaluates the… More > Graphic Abstract

    Effect of Thermoelectric Cooler Arrangements on Thermal Performance and Energy Saving in Electronic Applications: An Experimental Study

  • Open Access

    ARTICLE

    Adaptive Grid-Interface Control for Power Coordination in Multi-Microgrid Energy Networks

    Sk. A. Shezan*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.073418 - 27 December 2025

    Abstract Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization. However, the high penetration of intermittent renewable sources often causes frequency deviations, voltage fluctuations, and poor reactive power coordination, posing serious challenges to grid stability. Conventional Interconnection Flow Controllers (IFCs) primarily regulate active power flow and fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks. To overcome these limitations, this study proposes an enhanced Interconnection Flow Controller (e-IFC) that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller (IRFC) within a unified adaptive… More >

  • Open Access

    ARTICLE

    Robust Sensor—Less PR Controller Design for 15-PUC Multilevel Inverter Topology with Low Voltage Stress for Renewable Energy Applications

    K. Naga Venkata Siva1, Damodhar Reddy2, P. Krishna Murthy3, Kiran Kumar Pulamolu4, M. Dharani5, T. Venkatakrishnamoorthy6,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.072982 - 27 December 2025

    Abstract Conventional multilevel inverters often suffer from high harmonic distortion and increased design complexity due to the need for numerous power semiconductor components, particularly at elevated voltage levels. Addressing these shortcomings, this work presents a robust 15-level Packed U Cell (PUC) inverter topology designed for renewable energy and grid-connected applications. The proposed system integrates a sensor less proportional-resonant (PR) controller with an advanced carrier-based pulse width modulation scheme. This approach efficiently balances capacitor voltage, minimizes steady-state error, and strongly suppresses both zero and third-order harmonics resulting in reduced total harmonic distortion and enhanced voltage regulation. Additionally, More >

  • Open Access

    ARTICLE

    Dynamic Boundary Optimization via IDBO-VMD: A Novel Power Allocation Strategy for Hybrid Energy Storage with Enhanced Grid Stability

    Zujun Ding, Qi Xiang, Chengyi Li, Mengyu Ma, Chutong Zhang, Xinfa Gu, Jiaming Shi, Hui Huang, Aoyun Xia, Wenjie Wang, Wan Chen, Ziluo Yu, Jie Ji*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070442 - 27 December 2025

    Abstract In order to address environmental pollution and resource depletion caused by traditional power generation, this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved Dung Beetle Optimizer (IDBO) with Variational Mode Decomposition (VMD). The IDBO-VMD method is designed to enhance the accuracy and efficiency of wind-speed time-series decomposition and to effectively smooth photovoltaic power fluctuations. This study innovatively improves the traditional variational mode decomposition (VMD) algorithm, and significantly improves the accuracy and adaptive ability of signal decomposition by IDBO self-optimization of key parameters K and a. On this basis, Fourier transform technology… More >

  • Open Access

    ARTICLE

    Optimal Allocation of Multiple Energy Storage Capacity in Industrial Park Considering Demand Response and Laddered Carbon Trading

    Jingshuai Pang1,2, Songcen Wang1, Hongyin Chen1,2,*, Xiaoqiang Jia1, Yi Guo1, Ling Cheng1, Xinhe Zhang1, Jianfeng Li1

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070256 - 27 December 2025

    Abstract To achieve the goals of sustainable development of the energy system and the construction of a low-carbon society, this study proposes a multi-energy storage collaborative optimization strategy for industrial park that integrates the laddered carbon trading mechanism with demand response. Firstly, a dual dimensional DR model is constructed based on the characteristics of load elasticity. The alternative DR enables flexible substitution of energy loads through complementary conversion of electricity/heat/cold multi-energy sources, while the price DR relies on time-of-use electricity price signals to guide load spatiotemporal migration; Secondly, the LCT mechanism is introduced to achieve optimal… More >

  • Open Access

    REVIEW

    Curtain Wall Systems as Climate-Adaptive Energy Infrastructures: A Critical Review of Their Role in Sustainable Building Performance

    Samira Rastbod1, Mehdi Jahangiri2,*, Behrang Moradi1, Haleh Nazari1

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070089 - 27 December 2025

    Abstract Curtain wall systems have evolved from aesthetic façade elements into multifunctional building envelopes that actively contribute to energy efficiency and climate responsiveness. This review presents a comprehensive examination of curtain walls from an energy-engineering perspective, highlighting their structural typologies (Stick and Unitized), material configurations, and integration with smart technologies such as electrochromic glazing, parametric design algorithms, and Building Management Systems (BMS). The study explores the thermal, acoustic, and solar performance of curtain walls across various climatic zones, supported by comparative analyses and iconic case studies including Apple Park, Burj Khalifa, and Milad Tower. Key challenges—including… More > Graphic Abstract

    Curtain Wall Systems as Climate-Adaptive Energy Infrastructures: A Critical Review of Their Role in Sustainable Building Performance

  • Open Access

    ARTICLE

    Construction of MMC-CLCC Hybrid DC Transmission System and Its Power Flow Reversal Control Strategy

    Yechun Xin1, Xinyuan Zhao1, Dong Ding2, Shuyu Chen2, Chuanjie Wang2, Tuo Wang1,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069748 - 27 December 2025

    Abstract To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current (HVDC) links and multi-infeed DC systems in load-center regions, this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter (MMC-CLCC) HVDC transmission system and its corresponding control strategy. First, the system topology is constructed, and a submodule configuration method for the MMC—combining full-bridge submodules (FBSMs) and half-bridge submodules (HBSMs)—is proposed to enable direct power flow reversal. Second, a hierarchical control strategy is introduced, including MMC voltage control, CLCC current control, and a coordination mechanism, along with the derivation of… More >

  • Open Access

    ARTICLE

    Comprehensive Multi-Criteria Assessment of GBH-IES Microgrid with Hydrogen Storage

    Xue Zhang1, Jie Chen2,*, Zhihui Zhang3, Dewei Zhang3, Yuejiao Ming3, Xinde Zhang3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069487 - 27 December 2025

    Abstract The integration of wind power and natural gas for hydrogen production forms a Green and Blue Hydrogen Integrated Energy System (GBH-IES), which is a promising cogeneration approach characterized by multi-energy complementarity, flexible dispatch, and efficient utilization. This system can meet the demands for electricity, heat, and hydrogen while demonstrating significant performance in energy supply, energy conversion, economy, and environment (4E). To evaluate the GBH-IES system effectively, a comprehensive performance evaluation index system was constructed from the 4E dimensions. The fuzzy DEMATEL method was used to quantify the causal relationships between indicators, establishing a scientific input-output… More > Graphic Abstract

    Comprehensive Multi-Criteria Assessment of GBH-IES Microgrid with Hydrogen Storage

  • Open Access

    ARTICLE

    Determining the Energy Potential of Deep Borehole Heat Exchangers in Croatia and Economic Analysis of Oil & Gas Well Revitalization

    Marija Macenić, Tomislav Kurevija*, Tin Herbst

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.067067 - 27 December 2025

    Abstract The increased interest in geothermal energy is evident, along with the exploitation of traditional hydrothermal systems, in the growing research and projects developing around the reuse of already-drilled oil, gas, and exploration wells. The Republic of Croatia has around 4000 wells, however, due to a long period since most of these wells were drilled and completed, there is uncertainty about how many are available for retrofitting as deep-borehole heat exchangers. Nevertheless, as hydrocarbon production decreases, it is expected that the number of wells available for the revitalization and exploitation of geothermal energy will increase. The… More >

Displaying 1-10 on page 1 of 1257. Per Page