Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,087)
  • Open Access

    ARTICLE

    Evaluating Dying Efficiency and Energy Performance of a Hybrid Solar Dryer with Natural, Forced, and Hybrid Convection Modes for Tomatoes

    Sadaf Gul Unar1, Shoaib Ahmed Khatri1,*, Nayyar Hussain Mirjat1, Muhammad Faraz Arain1, Syed Rafay Ahmed Zaidi1, Laveet Kumar2

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 479-505, 2025, DOI:10.32604/fhmt.2025.063937 - 25 April 2025

    Abstract This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic (PV) and solar thermal systems for sustainable food preservation in Pakistan, addressing the country’s pressing issues of high post-harvest losses and unreliable energy sources. The proposed active hybrid solar dryer features a drying cabinet, two Direct Current (DC) fans for forced convection, and a resistive heating element powered by a 180 W solar PV panel. An energy-storing battery ensures continuous supply to the auxiliaries during periods of low solar irradiance, poor weather conditions, or nighttime. Tomatoes, a delicate and in-demand crop, were… More >

  • Open Access

    ARTICLE

    Numerical Study of Multi-Factor Coupling Effects on Energy Conversion Performance of Nanofluidic Reverse Electrodialysis

    Hao Li1, Cunlu Zhao2, Jinhui Zhou1, Jun Zhang3, Hui Wang1, Yanmei Jiao1,*, Yugang Zhao4,5,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 507-528, 2025, DOI:10.32604/fhmt.2025.063359 - 25 April 2025

    Abstract Based on the rapid advancements in nanomaterials and nanotechnology, the Nanofluidic Reverse Electrodialysis (NRED) has attracted significant attention as an innovative and promising energy conversion strategy for extracting sustainable and clean energy from the salinity gradient energy. However, the scarcity of research investigating the intricate multi-factor coupling effects on the energy conversion performance, especially the trade-offs between ion selectivity and mass transfer in nanochannels, of NRED poses a great challenge to achieving breakthroughs in energy conversion processes. This numerical study innovatively investigates the multi-factor coupling effect of three critical operational factors, including the nanochannel configuration,… More >

  • Open Access

    ARTICLE

    Smart Grid Peak Shaving with Energy Storage: Integrated Load Forecasting and Cost-Benefit Optimization

    Cong Zhang1,2, Chutong Zhang2, Lei Shen1, Renwei Guo2, Wan Chen1, Hui Huang2, Jie Ji2,*

    Energy Engineering, Vol.122, No.5, pp. 2077-2097, 2025, DOI:10.32604/ee.2025.064175 - 25 April 2025

    Abstract This paper presents a solution for energy storage system capacity configuration and renewable energy integration in smart grids using a multi-disciplinary optimization method. The solution involves a hybrid prediction framework based on an improved grey regression neural network (IGRNN), which combines grey prediction, an improved BP neural network, and multiple linear regression with a dynamic weight allocation mechanism to enhance prediction accuracy. Additionally, an improved cuckoo search (ICS) algorithm is designed to empower the neural network model, incorporating a gamma distribution disturbance factor and adaptive inertia weight to balance global exploration and local exploitation, achieving… More >

  • Open Access

    ARTICLE

    Renewable Energy-Based Solutions for Decentralized Electrification: Demand Assessment and Multi-Tier Framework Approach

    Jacob Manyuon Deng1,*, Cyrus Wabuge Wekesa2, Khan Jean De Dieu Hakizimana1, Joseph Nzabahimana3

    Energy Engineering, Vol.122, No.5, pp. 1839-1862, 2025, DOI:10.32604/ee.2025.063398 - 25 April 2025

    Abstract Energy access remains a critical challenge in rural South Sudan, with communities heavily relying on expensive and unfriendly environmental energy sources such as diesel generators and biomass. This study addresses the predicament by evaluating the feasibility of renewable energy-based decentralized electrification in the selected village of Doleib Hill, Upper Nile, South Sudan. Using a demand assessment and the Multi-Tier Framework (MTF) approach, it categorizes households, public facilities, private sector, Non-Governmental Organizations (NGOs) and business energy needs and designs an optimized hybrid energy system incorporating solar Photovoltaic (PV), wind turbines, batteries, and a generator. The proposed… More > Graphic Abstract

    Renewable Energy-Based Solutions for Decentralized Electrification: Demand Assessment and Multi-Tier Framework Approach

  • Open Access

    ARTICLE

    Stackelberg Game for Bilateral Transactions between Energy Storage and Wind Farms Considering the Day-Ahead Electricity Market

    Xingxu Zhu1, Guiqing Zhao1, Gangui Yan1, Junhui Li1,*, Hongda Dong2, Chenggang Li2

    Energy Engineering, Vol.122, No.5, pp. 1645-1668, 2025, DOI:10.32604/ee.2025.063192 - 25 April 2025

    Abstract The participation of wind farms in the former energy market faces challenges such as power fluctuations and energy storage construction costs. To this end, this paper proposes a joint energy storage operation scheme for multiple wind farms based on a leasing model, which assists wind farms in bidding for participation in the former energy market through leasing services, thereby enhancing energy storage efficiency and maximizing economic benefits. In this paper, based on the Weibull probability distribution to portray the uncertainty of wind power, and considering the lifetime capacity loss caused by charging and discharging of… More > Graphic Abstract

    Stackelberg Game for Bilateral Transactions between Energy Storage and Wind Farms Considering the Day-Ahead Electricity Market

  • Open Access

    ARTICLE

    Optimization of Supply and Demand Balancing in Park-Level Energy Systems Considering Comprehensive Utilization of Hydrogen under P2G-CCS Coupling

    Zhiyuan Zhang1, Yongjun Wu1, Xiqin Li1, Minghui Song1, Guangwu Zhang2, Ziren Wang3,*, Wei Li3

    Energy Engineering, Vol.122, No.5, pp. 1919-1948, 2025, DOI:10.32604/ee.2025.063178 - 25 April 2025

    Abstract The park-level integrated energy system (PIES) is essential for achieving carbon neutrality by managing multi-energy supply and demand while enhancing renewable energy integration. However, current carbon trading mechanisms lack sufficient incentives for emission reductions, and traditional optimization algorithms often face challenges with convergence and local optima in complex PIES scheduling. To address these issues, this paper introduces a low-carbon dispatch strategy that combines a reward-penalty tiered carbon trading model with P2G-CCS integration, hydrogen utilization, and the Secretary Bird Optimization Algorithm (SBOA). Key innovations include: (1) A dynamic reward-penalty carbon trading mechanism with coefficients (μ = 0.2,… More >

  • Open Access

    ARTICLE

    Adaptive Multi-Objective Energy Management Strategy Considering the Differentiated Demands of Distribution Networks with a High Proportion of New-Generation Sources and Loads

    Huang Tan1, Haibo Yu1, Tianyang Chen1, Hanjun Deng2, Yetong Hu3,*

    Energy Engineering, Vol.122, No.5, pp. 1949-1973, 2025, DOI:10.32604/ee.2025.062574 - 25 April 2025

    Abstract With the increasing integration of emerging source-load types such as distributed photovoltaics, electric vehicles, and energy storage into distribution networks, the operational characteristics of these networks have evolved from traditional single-load centers to complex multi-source, multi-load systems. This transition not only increases the difficulty of effectively classifying distribution networks due to their heightened complexity but also renders traditional energy management approaches—primarily focused on economic objectives—insufficient to meet the growing demands for flexible scheduling and dynamic response. To address these challenges, this paper proposes an adaptive multi-objective energy management strategy that accounts for the distinct operational… More >

  • Open Access

    ARTICLE

    Optimization and Intelligent Control in Hybrid Renewable Energy Systems Incorporating Solar and Biomass

    Arpita Johri1,2,*, Varnita Verma3, Mainak Basu1,*

    Energy Engineering, Vol.122, No.5, pp. 1887-1918, 2025, DOI:10.32604/ee.2025.062355 - 25 April 2025

    Abstract The globe faces an urgent need to close the energy demand-supply gap. Addressing this difficulty requires constructing a Hybrid Renewable Energy System (HRES), which has proven to be the most appropriate solution. HRES allows for integrating two or more renewable energy resources, successfully addressing the issue of intermittent availability of non-conventional energy resources. Optimization is critical for improving the HRES’s performance parameters during implementation. This study focuses on HRES using solar and biomass as renewable energy supplies and appropriate energy storage technologies. However, energy fluctuations present a problem with the power quality of HRES. To… More > Graphic Abstract

    Optimization and Intelligent Control in Hybrid Renewable Energy Systems Incorporating Solar and Biomass

  • Open Access

    ARTICLE

    Energy-Efficient Air Conditioning System with Combined a Ceiling Fan for Thermal Comfort in an Office

    Linlan Chang1, Win-Jet Luo1,2, Indra Permana2, Bowo Yuli Prasetyo3, Alya Penta Agharid1, Fujen Wang2,*

    Energy Engineering, Vol.122, No.5, pp. 1771-1787, 2025, DOI:10.32604/ee.2025.062209 - 25 April 2025

    Abstract Heating, Ventilation, and Air Conditioning (HVAC) systems are critical for maintaining thermal comfort in office environments which also crucial for occupant well-being and productivity. This study investigates the impact of integrating ceiling fans with higher air conditioning setpoints on thermal comfort and energy efficiency in office environments. Field measurements and questionnaire surveys were conducted to evaluate thermal comfort and energy-saving potential under varying conditions. Results show that increasing the AC setpoint from 25°C to 27°C, combined with ceiling fan operation, reduced power consumption by 10%, achieving significant energy savings. Survey data confirmed that 85% of… More >

  • Open Access

    ARTICLE

    Application of a Regional Data Set of the Housing Sector for Hydrogen Storage-Supported Energy System Planning

    Steffen Schedler1,*, Michael Bareev-Rudy1, Stefanie Meilinger2, Tanja Clees1,3

    Energy Engineering, Vol.122, No.5, pp. 1755-1770, 2025, DOI:10.32604/ee.2025.061962 - 25 April 2025

    Abstract Germany aims to achieve a national climate-neutral energy system by 2045. The residential sector still accounts for 29% of end energy consumption, with 74% attributed to the direct use of fossil fuels for heating and hot water. In order to reduce fossil energy use in the household sector, great efforts are being made to design new energy concepts that expand the use of renewable energies to supply electricity and heat. One possibility is to convert parts of the natural gas grid to a hydrogen-based gas grid to deliver and store energy for urban quarters of… More >

Displaying 1-10 on page 1 of 1087. Per Page