Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,008)
  • Open Access

    PROCEEDINGS

    Optimized Design Study of Subsea Hydrothermal Closed-Loop Heat Collection System Based on Numerical Simulation

    Gaowei Yi1, Da Zhang1,2, Xinyu Liu1, Yan Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-3, 2024, DOI:10.32604/icces.2024.011165

    Abstract 1 Introduction
    With dwindling terrestrial energy resources, there's a societal consensus to harness clean, renewable energy. Submarine hydrothermal vents, hosting abundant and unexplored energy potentials, draw international academic scrutiny [1]. Yet, comprehensive research on exploiting their thermal energy systems remains sparse. Existing technologies persist with stability and efficiency challenges. While promising ventures in hydrothermal power generation exist, they grapple with heat loss, instability, limited capacity, and heightened damage susceptibility [2]. This study scrutinizes submarine hydrothermal vents, amalgamating terrestrial closed-loop geothermal technology to resolve challenges and enable efficient energy utilization [3]. Given the complex geology of these… More >

  • Open Access

    PROCEEDINGS

    Additively Manufactured Dual-Faced Structured Fabric for Shape-Adaptive Protection

    Yuanyuan Tian1,2, Kun Zhou1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013372

    Abstract Fabric-based materials have demonstrated promise for high-performance wearable applications but are currently restricted by their deficient mechanical properties. Here, we leverage the design freedom offered by additive manufacturing and a novel interlocking pattern to for the first time fabricate a dual-faced chain mail structure consisting of three-dimensional re-entrant unit cells. The flexible structured fabric demonstrates high specific energy absorption and specific strength of up to 1530 J/kg and 5900 N·m/kg, respectively, together with an excellent recovery ratio of ~80%, thereby overcoming the strength–recoverability trade-off. The designed dual-faced structured fabric compares favorably against a wide range More >

  • Open Access

    PROCEEDINGS

    Effects of Hatch Spacing on Pore Segregation and Mechanical Properties During Blue Laser Directed Energy Deposition of AlSi10Mg

    Hongze Wang1,2,3,*, An Wang1,2, Zijue Tang1,2, Yi Wu1,2,3, Haowei Wang1,2,3,4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012430

    Abstract Hatch spacing is a crucial parameter for achieving superior mechanical properties during the process of laser directed energy deposition (L-DED) process. However, the optimum hatch spacing is based on trial and error approaches using pre-existing experience. In this paper, we have systematically compared the porosity characteristics, microstructure evolution, and thermal gradients in double tracks of AlSi10Mg under various hatch spacings during blue laser directed energy deposition (BL-DED). A peculiar phenomenon of pore segregation is observed at the boundary of the overlapping zone of adjacent deposited tracks, where the porosity is almost 8 times that of… More >

  • Open Access

    PROCEEDINGS

    Wire Arc Directed Energy Deposited High Performance Aluminium Alloy

    Xuewei Fang1,2,*, Jiannan Yang1, Ke Huang1, Bingheng Lu1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012410

    Abstract Wire and Arc Additive Manufacturing (WAAM) technology has the advantages of high-efficiency and low-cost to fabricate large-scaled components with medium-complexity. 2319 aluminum alloy is a widely used in aerospace and military industries. Problems of porosity, residual stress, distortion, and poor mechanical properties were focused on in this paper. The mechanism of defect formation during fabrication and strengthening mechanism of peening process were investigated. In order to learn the droplet transfer and molten pool flow behavior, CFD models of molten pools for the pulse mode of CMT (CMT + P) and pulse reverse polarity CMT mode… More >

  • Open Access

    PROCEEDINGS

    Additive Manufacturing of Energy Storage Devices

    Xiaocong Tian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, 2024, DOI:10.32604/icces.2024.011810

    Abstract With the ever-growing demand for miniature electronics and portable devices, the need for new types of micro-sized, low-cost and high-performance electrochemical energy storage devices becomes a cutting-edge research frontier. Advanced manufacturing technology (such as 3D printing) has brought broad application prospects and new opportunities to the construction of advanced electrochemical energy storage materials and devices. With a focus on “advanced manufacturing of new energy storage materials and devices”, we carried out interdisciplinary research on 3D/4D printing of wearable miniature batteries and supercapacitors, integrable energy devices and systems. Notably, a universal 3D printing approach towards advanced More >

  • Open Access

    PROCEEDINGS

    Programmable Mechanical Properties of Additive Manufactured Novel Steel

    Jinlong Su1,2, Chaolin Tan2,*, Swee Leong Sing1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012733

    Abstract Tailoring thermal history during additive manufacturing (AM) offers a viable approach to customising the microstructure and properties of materials without changing alloy compositions, which is generally overlooked as it is hard to achieve in commercial materials. In this work, a customised Fe-Ni-Ti-Al maraging steel with rapid precipitation kinetics offers the opportunity to leverage thermal history during AM for achieving large-range tunable strength-ductility combinations without post heat treatment or changing alloy chemistry. The Fe-Ni-Ti-Al maraging steel was processed by laser-directed energy deposition (LDED) with different deposition strategies to tailor the thermal history. As the phase transformation… More >

  • Open Access

    PROCEEDINGS

    Optimal Design of Energy Harvester with Wind-Induced Bluff Body Flexural Electric Cantilever Structure

    Ying Luo1,*, Hanxuan Xu1, Hongguang Liu1, Chenguang Xu1, Xingchuan Liao1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.012595

    Abstract This study focuses on the widespread utilization of environmental wind energy to power electronic devices and wireless network sensor nodes with low energy consumption characteristics. It explores the influence of relevant geometric parameters of wind-excited bluff body flexible electric cantilever structures on energy harvesting systems, aiming to enhance effective wind energy collection over a wider range of wind speeds. Through numerical analysis, considering the effects of flexible electric cantilever beam dimensions and rectangular cross-sectional bluff body dimensions on the critical flutter wind speed of the energy harvester, optimal structural parameters of the rectangular cross-sectional bluff… More >

  • Open Access

    PROCEEDINGS

    The Quasi-Static Compressive Properties and Energy Absorption Behavior of Alumina/Aluminum Lattice Structure Composites

    Han Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012843

    Abstract Aluminum lattice structures have the advantages of lightweight, high specific strength/stiffness and excellent plasticity, while alumina ceramic lattice structures usually show high strength and significant brittleness. Therefore, alumina/aluminum interpenetrating composites can combine two distinct mechanical properties and show superior performance, which is beneficial to applications in aerospace and military industries. In this study, alumina ceramic lattice structures were prepared by additive manufacturing (AM) and used as infiltration skeleton. The molten aluminum was then infiltrated into alumina ceramic lattice structures. By this method, the alumina/aluminum ordered structure composites were prepared. Through mechanical experiments and finite element More >

  • Open Access

    PROCEEDINGS

    Mechanics of Freezing-Empowered Self-Catapulting of Water Droplets

    Haimin Yao1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012649

    Abstract Despite the remarkable progress of anti-icing and deicing technologies in the past decades, it remains a grand challenge to dislodge freezing water from a solid surface without consuming external energy. Herein, we propose a strategy to dislodge freezing water from solid surfaces just by leveraging its volume expansion resulting from the phase change from water to ice. The implementation of this energy-saving strategy relies on a simple micropillar-based gadget on the surface, termed freezing-empowered droplet catapult (FEDC), whereby the work done by the volume expansion of a freezing droplet accreted on it can be harvested… More >

  • Open Access

    PROCEEDINGS

    Adaptive Quality Enhancement in Robotic Laser-Directed Energy Deposition Through Melt Pool Simulation

    Jungyeon Kim1, Lequn Chen1, Seung Ki Moon1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012511

    Abstract Robotic Laser-Directed Energy Deposition (L-DED) offers significant advantages in terms of workplace size and kinematic flexibility for part fabrication. However, its potential is hindered by challenges such as toolpath precision and speed inconsistency compared to traditional CNC machines. These limitations critically affect melt pool dynamics, temperature consistency, and ultimately, the geometric integrity of fabricated parts, areas that are still not thoroughly understood or quantified.
    This preliminary research aims to investigate the impact of these inaccuracies on melt pool morphology and part quality, utilizing in-situ collected speed/position data with a digital twin model, notably the Eagar-Tsai… More >

Displaying 1-10 on page 1 of 1008. Per Page