Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,210)
  • Open Access

    ARTICLE

    Variable Integral Parameter Control Strategy for Secondary Frequency Regulation with Multiple Energy Storage Units

    Jinyu Guo*, Xingxu Zhu, Zezhong Liu, Cuiping Li

    Energy Engineering, Vol.122, No.10, pp. 3961-3983, 2025, DOI:10.32604/ee.2025.067811 - 30 September 2025

    Abstract In high-renewable-energy power systems, the demand for fast-responding capabilities is growing. To address the limitations of conventional closed-loop frequency control, where the integral coefficient cannot dynamically adjust the frequency regulation command based on the state of charge (SoC) of energy storage units, this paper proposes a secondary frequency regulation control strategy based on variable integral coefficients for multiple energy storage units. First, a power-uniform controller is designed to ensure that thermal power units gradually take on more regulation power during the frequency regulation process. Next, a control framework based on variable integral coefficients is proposed… More >

  • Open Access

    ARTICLE

    Research on Wave Energy Harvesting Technology Using a Hybrid Triboelectric Nanogenerator and Electromagnetic Generator

    Jingying Zou1,#, Wenzhou Liu1,#, Yaoxuan Han2, Chenxi Wang3, Chao Dong4, Youbo Jia5,*

    Energy Engineering, Vol.122, No.10, pp. 4081-4097, 2025, DOI:10.32604/ee.2025.067544 - 30 September 2025

    Abstract The ocean, as one of Earth’s largest natural resources, covers over 70% of the planet’s surface and holds vast water energy potential. Building on this context, this study designs a hybrid generator (WWR-TENG) that integrates a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG). TENG is a new technology that can capture mechanical energy from the environment and convert it into electrical energy, and is particularly suitable for common natural or man-made power sources such as human movement, wind power, and water flow. EMG is a device that converts mechanical energy into electrical energy through… More >

  • Open Access

    ARTICLE

    Calculation of Commutation Failure Overvoltage in High-Voltage Direct Current Transmission Terminal Systems with Grid-Forming Renewable Energy Sources

    Weibing Xu1, Bo Yao2,*, Xiangjun Quan3, Xunyou Zhang1, Ning Zou2, Shuo Liu2, Jia Wang4, Jiansuo Zhang4

    Energy Engineering, Vol.122, No.10, pp. 4225-4243, 2025, DOI:10.32604/ee.2025.066738 - 30 September 2025

    Abstract The integration of large-scale new energy and high-capacity DC transmission leads to a reduction in system inertia. Grid-forming renewable energy sources (GF-RES) has a significant improvement effect on system inertia. Commutation failure faults may cause a short-term reactive power surplus at the sending end and trigger transient overvoltage, threatening the safe and stable operation of the power grid. However, there is a lack of research on the calculation method of transient overvoltage caused by commutation failure in high-voltage DC transmission systems with grid-forming renewable energy sources integration. Based on the existing equivalent model of high-voltage… More >

  • Open Access

    ARTICLE

    Design and Test Verification of Energy Consumption Perception AI Algorithm for Terminal Access to Smart Grid

    Sheng Bi1,2,*, Jiayan Wang1, Dong Su1, Hui Lu1, Yu Zhang1

    Energy Engineering, Vol.122, No.10, pp. 4135-4151, 2025, DOI:10.32604/ee.2025.066735 - 30 September 2025

    Abstract By comparing price plans offered by several retail energy firms, end users with smart meters and controllers may optimize their energy use cost portfolios, due to the growth of deregulated retail power markets. To help smart grid end-users decrease power payment and usage unhappiness, this article suggests a decision system based on reinforcement learning to aid with electricity price plan selection. An enhanced state-based Markov decision process (MDP) without transition probabilities simulates the decision issue. A Kernel approximate-integrated batch Q-learning approach is used to tackle the given issue. Several adjustments to the sampling and data… More >

  • Open Access

    ARTICLE

    Techno-Economic Feasibility Analysis of Grid-Connected Hybrid PV Power System in Brunei

    Khairul Eahsun Fahim1, Liyanage C. De Silva2, Sk. A. Shezan3,*, Md Ashraful Islam4, Md Shakib Hassan5, Hayati Yassin1,*, Naveed Ahmad6

    Energy Engineering, Vol.122, No.10, pp. 3985-3997, 2025, DOI:10.32604/ee.2025.066484 - 30 September 2025

    Abstract Around the world, there has been a notable shift toward the use of renewable energy technology due to the growing demand for energy and the ongoing depletion of conventional resources, such as fossil fuels. Following this worldwide trend, Brunei’s government has initiated several strategic programs aimed at encouraging the establishment of energy from renewable sources in the nation’s energy mix. These initiatives are designed not only to support environmental sustainability but also to make energy from renewable sources increasingly competitive in comparison to more conventional energy sources like gas and oil, which have historically dominated… More >

  • Open Access

    ARTICLE

    Optimized Foil-Based Impeller Design for Enhanced Power Recovery in Pump-as-Turbine Applications

    Ali Abdulshaheed1,*, Faizal Mustapha1, Mohd Anuar2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2289-2304, 2025, DOI:10.32604/fdmp.2025.066983 - 30 September 2025

    Abstract A pump operating as a turbine (PAT) is a type of hydraulic machine capable of functioning both as a pump and as a turbine by reversing the flow direction. The pump-as-turbine (PAT) approach presents an effective method of hydropower generation, particularly suitable for addressing the increasing global energy demands in rural and remote areas. In addition to its adaptability, PAT-based micro-hydropower systems typically incur lower operating costs than conventional hydrodynamic turbines, despite requiring higher initial investment. Recent research has focused on integrating PATs into pipe distribution systems to harness untapped hydraulic energy. This study presents… More >

  • Open Access

    ARTICLE

    Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index

    Bassel Weiss1, Segundo Esteban2,*, Matilde Santos3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3387-3418, 2025, DOI:10.32604/cmes.2025.070070 - 30 September 2025

    Abstract Anomaly detection in wind turbines involves emphasizing its ability to improve operational efficiency, reduce maintenance costs, extend their lifespan, and enhance reliability in the wind energy sector. This is particularly necessary in offshore wind, currently one of the most critical assets for achieving sustainable energy generation goals, due to the harsh marine environment and the difficulty of maintenance tasks. To address this problem, this work proposes a data-driven methodology for detecting power generation anomalies in offshore wind turbines, using normalized and linearized operational data. The proposed framework transforms heterogeneous wind speed and power measurements into… More > Graphic Abstract

    Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index

  • Open Access

    ARTICLE

    Deep Auto-Encoder Based Intelligent and Secure Time Synchronization Protocol (iSTSP) for Security-Critical Time-Sensitive WSNs

    Ramadan Abdul-Rashid1, Mohd Amiruddin Abd Rahman1,*, Abdulaziz Yagoub Barnawi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3213-3250, 2025, DOI:10.32604/cmes.2025.066589 - 30 September 2025

    Abstract Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks (WSNs), especially in security-critical, time-sensitive applications. However, most existing protocols degrade substantially under malicious interference. We introduce iSTSP, an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust, precise synchronization even in hostile environments: (1) trust preprocessing that filters node participation using behavioral trust scoring; (2) anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time; (3) reliability-weighted consensus that prioritizes high-trust nodes during time aggregation; and (4) convergence-optimized synchronization… More >

  • Open Access

    PROCEEDINGS

    Techno-Economic Analysis of Offshore Hydrogen Energy Storage and Transportation Based on Levelized Cost

    Ziming Hu1, Jingfa Li1,*, Chaoyang Fan1, Jiale Xiao1, Huijie Huang2, Bo Yu1, Baocheng Shi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010823

    Abstract Hydrogen production from offshore wind power is an effective means to address the challenges of wind power grid integration and has emerged as a focal point in the development and research of offshore wind energy in recent years. However, the current state of hydrogen storage and transportation technologies for offshore applications lacks comprehensive economic analysis. This study aims to provide a thorough economic evaluation of these technologies by considering both fixed investment costs and operational and maintenance costs. A levelized cost model is employed to analyze four offshore hydrogen storage and transportation schemes: gas hydrogen… More >

  • Open Access

    ARTICLE

    Cuckoo Search-Deep Neural Network Hybrid Model for Uncertainty Quantification and Optimization of Dielectric Energy Storage in Na1/2Bi1/2TiO3-Based Ceramic Capacitors

    Shige Wang1, Yalong Liang2, Lian Huang3, Pei Li4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2729-2748, 2025, DOI:10.32604/cmc.2025.068351 - 23 September 2025

    Abstract This study introduces a hybrid Cuckoo Search-Deep Neural Network (CS-DNN) model for uncertainty quantification and composition optimization of Na1/2Bi1/2TiO3 (NBT)-based dielectric energy storage ceramics. Addressing the limitations of traditional ferroelectric materials—such as hysteresis loss and low breakdown strength under high electric fields—we fabricate (1 − x)NBBT8-xBMT solid solutions via chemical modification and systematically investigate their temperature stability and composition-dependent energy storage performance through XRD, SEM, and electrical characterization. The key innovation lies in integrating the CS metaheuristic algorithm with a DNN, overcoming local minima in training and establishing a robust composition-property prediction framework. Our model accurately… More >

Displaying 31-40 on page 4 of 1210. Per Page