Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (900)
  • Open Access


    Simulation Analysis and Experiment Study of Nanocutting with AFM Probe on the Surface of Sapphire Substrate by Using Three Dimensional Quasi-steady Molecular Statics Nanocutting Model

    Zone-Ching Lin1, Ying-Chih Hsu1

    CMC-Computers, Materials & Continua, Vol.25, No.1, pp. 75-106, 2011, DOI:10.3970/cmc.2011.025.075

    Abstract The three-dimensional quasi-steady molecular statics nanocutting model is used by this paper to carry out simulation analysis of nanocutting of sapphire in order to explore the effects of conical tools with different tip radii of probe and straight-line cutting at different cutting depths, on cutting force. Meanwhile, this paper uses a cutting tool of atomic force microscopy (AFM) with a probe tip similar to a semisphere to conduct nanocutting experiment of sapphire substrate. Furthermore, from the experimental results of nanocutting sapphire substrate, this paper innovatively proposes the theoretical model and equation that the specific down force energy (SDFE) during nanocutting… More >

  • Open Access


    A PSO based Energy Efficient Coverage Control Algorithm for Wireless Sensor Networks

    Jin Wang1,2, Chunwei Ju2, Yu Gao2, Arun Kumar Sangaiah3, Gwang-jun Kim4,*

    CMC-Computers, Materials & Continua, Vol.56, No.3, pp. 433-446, 2018, DOI: 10.3970/cmc.2018.04132

    Abstract Wireless Sensor Networks (WSNs) are large-scale and high-density networks that typically have coverage area overlap. In addition, a random deployment of sensor nodes cannot fully guarantee coverage of the sensing area, which leads to coverage holes in WSNs. Thus, coverage control plays an important role in WSNs. To alleviate unnecessary energy wastage and improve network performance, we consider both energy efficiency and coverage rate for WSNs. In this paper, we present a novel coverage control algorithm based on Particle Swarm Optimization (PSO). Firstly, the sensor nodes are randomly deployed in a target area and remain static after deployment. Then, the… More >

  • Open Access


    Energy Release Rates for Interface Cracks in Multilayered Structures

    Changwei Huang1,*, Philip A. Williams2

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 261-272, 2019, DOI:10.32604/cmes.2019.06681

    Abstract This paper examines the evolution of the interfacial deflection energy release rates in multilayered structures under four-point bending. The J-integral and the extended finite element method (XFEM) are adopted to investigate the evolution of the interfacial deflection energy release rates of composite structures. Numerical results not only verify the accuracy of analytical solutions for the steady-state interfacial deflection energy release rate, but also provide the evolutionary history of the interfacial deflection energy release rate under different crack lengths. In addition, non-dimensional parametric analyses are performed to discuss the effects of normalized ratios of the crack length, the elastic modulus, and… More >

  • Open Access


    Numerical Simulation and Experimental Studies on Elastic-Plastic Fatigue Crack Growth

    Jie Wang1, Wei Jiang1,*, Qi Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 377-395, 2019, DOI:10.31614/cmes.2019.01836

    Abstract A elastic-plastic fatigue crack growth (FCG) finite element model was developed for predicting crack growth rate under cyclic load. The propagation criterion for this model was established based on plastically dissipated energy. The crack growth simulation under cyclic computation was implemented through the ABAQUS scripting interface. The predictions of this model are in good agreement with the results of crack propagation experiment of compact tension specimen made of 304 stainless steel. Based on the proposed model, the single peak overload retardation effect of elastic-plastic fatigue crack was analyzed. The results shows that the single peak overload will reduce the accumulation… More >

  • Open Access


    A Trajectory Planning-Based Energy-Optimal Method for an EMVT System

    Jiayu Lu1, Siqin Chang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.1, pp. 91-109, 2019, DOI:10.31614/cmes.2019.04190

    Abstract In this paper, a trajectory planning-based energy-optimal method is proposed to reduce the energy consumption of novel electromagnetic valve train (EMVT). Firstly, an EMVT optimization model based on state equation was established. Then, the Gauss pseudospectral method (GPM) was used to plan energy-optimal trajectory. And a robust feedforward-feedback tracking controller based on inverse system method is proposed to track the energy-optimal trajectory. In order to verify the effectiveness of the energy-optimal trajectory, a test bench was established. Finally, co-simulations based on MATLAB Simulink and AVL Boost were carried out to illustrate the effect of energy-optimal trajectories on engine performance. Experimental… More >

  • Open Access


    Numerical investigation of penetration in Ceramic/Aluminum targets using Smoothed particle hydrodynamics method and presenting a modified analytical model

    Ehsan Hedayati1, Mohammad Vahedi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.3, pp. 295-323, 2017, DOI:10.3970/cmes.2017.113.307

    Abstract Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets. In the present research, a modified model based on radius of ceramic cone was presented for ceramic/aluminum targets. In order to investigate and evaluate accuracy of the presented analytic model, obtained results were compared against the results of the Florence’s analytic model and also against numerical modeling results. The phenomenon of impact onto ceramic/aluminum composites were modeled using smoothed particle hydrodynamics (SPH) implemented utilizing ABAQUS Software. Results indicated that, with increasing initial velocity and ceramic thickness and decreasing support layer thickness, the… More >

  • Open Access


    Stable and Minimum Energy Configurations in the Spherical, Equal Mass Full 4-Body Problem

    D.J. Scheeres1

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.3, pp. 203-227, 2016, DOI:10.3970/cmes.2016.111.203

    Abstract The minimum energy and stable configurations in the spherical, equal mass full 4-body problem are investigated. This problem is defined as the dynamics of finite density spheres which interact gravitationally and through surface contact forces. This is a variation of the gravitational n-body problem in which the bodies are not allowed to come arbitrarily close to each other (due to their finite density), enabling the existence of resting configurations in addition to orbital motion. Previous work on this problem has outlined an efficient and simple way in which the stability of configurations in this problem can be defined. This methodology… More >

  • Open Access


    New Insights on Energy Conserved Planar Motion

    Maruthi R. Akella1, Sofokli Cakalli2

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.2, pp. 119-127, 2016, DOI:10.3970/cmes.2016.111.119

    Abstract The planar motion of a particle within an arbitrary potential field is considered. The particle is additionally subject to an external force wherein the applied thrust-acceleration is constrained to remain normal to the velocity vector. The system is thus non-conservative but since the thrust force is non-working, the total energy is a conserved quantity. Under this setting, a major result of fundamental importance is established in this paper: that the flight direction angle (more precisely, the sine of the angle between the position and velocity vectors) is shown to always satisfy a linear first-order differential equation with variable coefficients that… More >

  • Open Access


    Analysis of Square-shaped Crack in Layered Halfspace Subject to Uniform Loading over Rectangular Surface Area

    H. T. Xiao1,2,3, Y. Y. Xie1,2, Z. Q. Yue4

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.1, pp. 55-80, 2015, DOI:10.3970/cmes.2015.109.055

    Abstract This paper examines the problem of a square-shaped crack embedded in a layered half-space whose external surface is subject to a uniform loading over a rectangular area. Two novel numerical methods and the superposition principle in fracture mechanics are employed for the analysis of the crack problem. The numerical methods are based on the fundamental solution of a multilayered elastic medium and are, respectively, applied to calculate the stress fields of layered halfspace without cracks and the discontinuous displacements of crack surfaces in layered halfspace. The stress intensity factor (SIF) values are calculated using discontinuous displacements and the influence of… More >

  • Open Access


    Modular Model Library for Energy System in Lunar Vehicle

    Chen Chang1, Su Shaohui1, Chen Guojin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.1, pp. 1-20, 2015, DOI:10.3970/cmes.2015.108.001

    Abstract For modeling and simulation of energy system in lunar vehicle, there are many special purpose tools along with their models, such as PSIM, EMTP/ATP, could be used. But the models in these tools lack of flexibility and are not open to the end-user. Models developed in one tool can’t be conveniently used in others because of the barriers among these simulators. Usually these models are expressed in an explicit state-space form and their topology gets lost and future extension and reuse of the model is almost impossible. In order to solve those problems, a flexible and extensible energy system model… More >

Displaying 851-860 on page 86 of 900. Per Page