Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,087)
  • Open Access

    ARTICLE

    Resonator Rectenna Design Based on Metamaterials for Low-RF Energy Harvesting

    Watcharaphon Naktong1, Amnoiy Ruengwaree1,*, Nuchanart Fhafhiem2, Piyaporn Krachodnok3

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1731-1750, 2021, DOI:10.32604/cmc.2021.015843 - 13 April 2021

    Abstract In this paper, the design of a resonator rectenna, based on metamaterials and capable of harvesting radio-frequency energy at 2.45 GHz to power any low-power devices, is presented. The proposed design uses a simple and inexpensive circuit consisting of a microstrip patch antenna with a mushroom-like electromagnetic band gap (EBG), partially reflective surface (PRS) structure, rectifier circuit, voltage multiplier circuit, and 2.45 GHz Wi-Fi module. The mushroom-like EBG sheet was fabricated on an FR4 substrate surrounding the conventional patch antenna to suppress surface waves so as to enhance the antenna performance. Furthermore, the antenna performance More >

  • Open Access

    ARTICLE

    Energy Optimised Security against Wormhole Attack in IoT-Based Wireless Sensor Networks

    Hafsa Shahid1, Humaira Ashraf1, Hafsa Javed1, Mamoona Humayun2, Nz Jhanjhi3,*, Mohammed A. AlZain4

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1967-1981, 2021, DOI:10.32604/cmc.2021.015259 - 13 April 2021

    Abstract An IoT-based wireless sensor network (WSN) comprises many small sensors to collect the data and share it with the central repositories. These sensors are battery-driven and resource-restrained devices that consume most of the energy in sensing or collecting the data and transmitting it. During data sharing, security is an important concern in such networks as they are prone to many threats, of which the deadliest is the wormhole attack. These attacks are launched without acquiring the vital information of the network and they highly compromise the communication, security, and performance of the network. In the… More >

  • Open Access

    ARTICLE

    Cogent and Energy Efficient Authentication Protocol for WSN in IoT

    Tariq Mahmood Butt1, Rabia Riaz1, Chinmay Chakraborty2, Sanam Shahla Rizvi3, Anand Paul4,*

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1877-1898, 2021, DOI:10.32604/cmc.2021.014966 - 13 April 2021

    Abstract Given the accelerating development of Internet of things (IoT), a secure and robust authentication mechanism is urgently required as a critical architectural component. The IoT has improved the quality of everyday life for numerous people in many ways. Owing to the predominantly wireless nature of the IoT, connected devices are more vulnerable to security threats compared to wired networks. User authentication is thus of utmost importance in terms of security on the IoT. Several authentication protocols have been proposed in recent years, but most prior schemes do not provide sufficient security for these wireless networks.… More >

  • Open Access

    ARTICLE

    The Differences in Lower Extremity Joints Energy Dissipation Strategy during Landing between Athletes with Symptomatic Patellar Tendinopathy (PT) and without Patellar Tendinopathy (UPT)

    Datao Xu1, Zhenghui Lu1, Siqin Shen2, Gusztáv Fekete2, Ukadike C. Ugbolue3, Yaodong Gu1,*

    Molecular & Cellular Biomechanics, Vol.18, No.2, pp. 107-118, 2021, DOI:10.32604/mcb.2021.015453 - 09 April 2021

    Abstract Patellar tendinopathy is a clinical symptom of patellar tendons characterized by local pain in the front of the knee joint. It is common among basketball and volleyball players. Patients with patellar tendinopathy may exhibit different landing strategies during landing compared to healthy individuals. The purpose of this study was to compare the differences in lower limb joint energy dissipation (eccentric work) values for the symptomatic patellar tendinopathy (PT) athletes and no patellar tendinopathy (UPT) athletes during single-leg landing. A total of 26 (PT: 13, UPT:13) semi-professional male basketball and volleyball player’s kinetic data were collected… More >

  • Open Access

    ARTICLE

    Analysis of the Agglomeration of Powder in a Coaxial Powder Feeding Nozzle Used for Laser Energy Deposition

    Chenguang Guo1,2,*, Yu Sun1,2, Qiang Li1, Haitao Yue1, Chuang Wang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 349-370, 2021, DOI:10.32604/fdmp.2021.013535 - 02 April 2021

    Abstract

    To improve the agglomeration of powder in a coaxial powder feeding nozzle used in the frame of a laser energy deposition technique, the influence of several parameters must be carefully assessed. In the present study the problem is addressed by means of numerical simulations based on a DEM-CFD (Discrete Element Method and Discrete Element Method) coupled model. The influence of the powder flow concentration, powder flow focal length and the amount of powder at the nozzle outlet on the rate of convergence of the powder flow is considered. The role played by the nozzle outlet

    More >

  • Open Access

    ARTICLE

    Buoyancy driven Flow of a Second-Grade Nanofluid flow Taking into Account the Arrhenius Activation Energy and Elastic Deformation: Models and Numerical Results

    R. Kalaivanan1, N. Vishnu Ganesh2, Qasem M. Al-Mdallal3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 319-332, 2021, DOI:10.32604/fdmp.2021.012789 - 02 April 2021

    Abstract The buoyancy driven flow of a second-grade nanofluid in the presence of a binary chemical reaction is analyzed in the context of a model based on the balance equations for mass, species concentration, momentum and energy. The elastic properties of the considered fluid are taken into account. The two-dimensional slip flow of such non-Newtonian fluid over a porous flat material which is stretched vertically upwards is considered. The role played by the activation energy is accounted for through an exponent form modified Arrhenius function added to the Buongiorno model for the nanofluid concentration. The effects More >

  • Open Access

    ARTICLE

    Alcoholism Detection by Wavelet Energy Entropy and Linear Regression Classifier

    Xianqing Chen1,2, Yan Yan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.1, pp. 325-343, 2021, DOI:10.32604/cmes.2021.014489 - 30 March 2021

    Abstract Alcoholism is an unhealthy lifestyle associated with alcohol dependence. Not only does drinking for a long time leads to poor mental health and loss of self-control, but alcohol seeps into the bloodstream and shortens the lifespan of the body’s internal organs. Alcoholics often think of alcohol as an everyday drink and see it as a way to reduce stress in their lives because they cannot see the damage in their bodies and they believe it does not affect their physical health. As their drinking increases, they become dependent on alcohol and it affects their daily More >

  • Open Access

    ARTICLE

    Experimental and Numerical Study on the Shear Strength and Strain Energy of Rock Under Constant Shear Stress and Unloading Normal Stress

    Tantan Zhu1, Da Huang2,3,*, Jianxun Chen1, Yanbin Luo1, Longfei Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.1, pp. 79-97, 2021, DOI:10.32604/cmes.2021.014808 - 30 March 2021

    Abstract Excavation and earth surface processes (e.g., river incision) always induce the unloading of stress, which can cause the failure of rocks. To study the shear mechanical behavior of a rock sample under unloading normal stress conditions, a new stress path for direct shear tests was proposed to model the unloading of stress caused by excavation and other processes. The effects of the initial stresses (i.e., the normal stress and shear stress before unloading) on the shear behavior and energy conversion were investigated using laboratory tests and numerical simulations. The shear strength of a rock under… More >

  • Open Access

    ARTICLE

    Design and Analysis of a Small Sewage Source Heat Pump Triple Supply System

    Chunxue Gao1,*, Yu Hao1, Qiuxin Liu1,2

    Energy Engineering, Vol.118, No.3, pp. 667-678, 2021, DOI:10.32604/EE.2021.014703 - 22 March 2021

    Abstract Based on the characteristics of sewage from beauty salons, a simulation model of a small sewage source heat pump triple supply system that can be applied to such places is established to optimize the operating conditions of the system. The results show that with the increase of sewage temperature and flow, the performance of the system also increases. In summer conditions, the system provides cooling, recovers waste heat and condensed heat from sewage, with a COP value of 8.97; in winter conditions, the system heats and produces hot water, with a COP value of 2.44; More >

  • Open Access

    ARTICLE

    Energy and Cost Analysis of Processing Flat Plate Solar Collectors

    Mamdouh El Haj Assad1,*, Ali Khosravi2, Mohammad AlShabi3, Bassam Khuwaileh3, Abdul-Kadir Hamid4

    Energy Engineering, Vol.118, No.3, pp. 447-458, 2021, DOI:10.32604/EE.2021.014590 - 22 March 2021

    Abstract In this work, a life cycle analysis is accomplished for flat plate solar collectors. The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxide emissions. Energy consumption and system efficiency enhancement will be studied and predicted. CES EduPack software is used to perform the analysis of the currently commercial system, and the suggested changes are implemented to increase the efficiency and make the comparison. Even though cost analysis is done, the priority of selection is given to the most energy conserving and environmentally friendly alternative. More >

Displaying 831-840 on page 84 of 1087. Per Page