Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Studies on Compressive Loading-characteristics of PU Foam Materials Used in Footwear for Obese

    S. MATHIVANAN*, R. MOHAN, RAMES C PANDA, P. BALACHANDER1

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 195-204, 2022, DOI:10.32381/JPM.2022.39.3-4.2

    Abstract Optimum-designed footwear with polyurethane (PU) material for comfort is an important requirement for obese. Investigations on compressive behavior of varied designed footwear using 120 D PU material have been carried out. The energy absorption primarily depends on heel height, slope angle and load applied or body mass index of obese. Statistical analysis has been used to formulate the prediction of absorbed energy wherein a heel height of 30 mm with 20-degree angle provides optimum value with the incorporation of 120 D PU material. A coefficientof-determination (R2 ) value of 0.9406 confirms the suitability of the statistical regression model. Hence, the… More >

  • Open Access

    ARTICLE

    Investigation of Projectile Impact Behaviors of Graphene Aerogel Using Molecular Dynamics Simulations

    Xinyu Zhang1, Wenjie Xia2, Yang Wang3,4, Liang Wang1,*, Xiaofeng Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3047-3061, 2024, DOI:10.32604/cmes.2023.046922

    Abstract Graphene aerogel (GA), as a novel solid material, has shown great potential in engineering applications due to its unique mechanical properties. In this study, the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics (MD) simulations. The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading. Specifically, the impact-induced penetration of the projectile leads to the collapse of the pore structure, causing stretching and subsequent rupture of covalent bonds in graphene sheets. Moreover, the effects of temperature on the mechanical performance of… More >

  • Open Access

    PROCEEDINGS

    Fracture Behavior of Periodic Porous Structures by Phase Field Method

    Yuxuan Ying1, Wei Huang1,*, Yu-E Ma1, Fan Peng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.010572

    Abstract Intensive dynamic loadings are the main threats to the structural damage of protective structures and inner equipment, which has attracted a lot of attention in the field of advance impulsive resistance. Nanofluidic liquid foam (NLF) has become a novel and efficient energy absorption system due to its reusable energy absorption, ultra-high load transfer, and high energy absorption ratio. In order to solve the current problem that the energy absorption mechanism of NLF is still unclear, this paper conducted a systematic experimental study on the dynamic compression and energy absorption behaviours of NLF. The quasi-static cyclic compression experiments with different liquid… More >

  • Open Access

    PROCEEDINGS

    Dynamic Compression and Energy Absorption Behaviours of a Nanofluidic Liquid Foam

    Haiqi Feng1, Wei Huang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09347

    Abstract Intensive dynamic loadings are the main threats to the structural damage of protective structures and inner equipment, which has attracted a lot of attention in the field of advance impulsive resistance. Nanofluidic liquid foam (NLF) has become a novel and efficient energy absorption system due to its reusable energy absorption, ultra-high load transfer, and high energy absorption ratio [1-7]. In order to solve the current problem that the energy absorption mechanism of NLF is still unclear, this paper conducted a systematic experimental study on the dynamic compression and energy absorption behaviours of NLF. The quasi-static cyclic compression experiments with different… More >

  • Open Access

    ARTICLE

    Crashworthiness Design and Multi-Objective Optimization of Bionic Thin-Walled Hybrid Tube Structures

    Pingfan Li, Jiumei Xiao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 999-1016, 2024, DOI:10.32604/cmes.2023.044059

    Abstract Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties. However, issues such as high initial stress and low energy-absorbing efficiency arise. This study proposes a novel energy-absorbing structure in which a straight tube is combined with a conical tube and a bamboo-inspired bulkhead structure is introduced. This configuration allows the conical tube to flip outward first and then fold together with the straight tube. This deformation mode absorbs more energy and less peak force than the conical tube sinking and flipping inward. Through finite element numerical simulation, the specific energy absorption capacity of the… More >

  • Open Access

    ARTICLE

    Design and Mechanical Characterization of an S-Based TPMS Hollow Isotropic Cellular Structure

    Junjian Fu1,2, Pengfei Sun1, Yixian Du1,2,*, Lei Tian1, Qihua Tian1, Xiangman Zhou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 695-713, 2022, DOI:10.32604/cmes.2022.017842

    Abstract Cellular structures are regarded as excellent candidates for lightweight-design, load-bearing, and energy-absorbing applications. In this paper, a novel S-based TPMS hollow isotropic cellular structure is proposed with both superior load-bearing and energy-absorbing performances. The hollow cellular structure is designed with Boolean operation based on the Fischer-Koch (S) implicit triply periodic minimal surfaces (TPMS) with different level parameters. The anisotropy and effective elasticity properties of cellular structures are evaluated with the numerical homogenization method. The finite element method is further conducted to analyze the static mechanical performance of hollow cellular structure considering the size effect. The compression experiments are finally carried… More >

  • Open Access

    ARTICLE

    Optimization Design of an Embedded Multi-Cell Thin-Walled Energy Absorption Structures with Local Surface Nanocrystallization

    Kang Xu, Tong Li, Gaofei Guan, Jianlong Qu, Zhen Zhao, Xinsheng Xu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 987-1002, 2022, DOI:10.32604/cmes.2022.018128

    Abstract By means of the local surface nanocrystallization that enables to change the material on local positions, an innovative embedded multi-cell (EMC) thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper. The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design. Results reveal that after optimizing the local surface nanocrystallization layout, the specific energy absorption (SEA) is increased by 50.78% compared with the untreated counterpart. Besides, in contrast with the optimized 4-cell structure, the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%, in contrast with… More >

  • Open Access

    ARTICLE

    Statistical Model for Impact and Energy Absorption of 3D Printed Coconut Wood-PLA

    J. Kananathan1,2, M. Samykano2,*, K. Kadirgama3, D. Ramasamy2, M. M. Rahman2

    Energy Engineering, Vol.118, No.5, pp. 1305-1315, 2021, DOI:10.32604/EE.2021.016131

    Abstract Fused deposition modeling (FDM)-3D printing has been the favored technology to build functional components in various industries. The present study investigates infill percentage and infill pattern effects on the printed parts’ impact properties through the 3D printing technique using coconut wood-filled PLA composites. Mathematical models are also proposed in the present study with the aim for future property prediction. According to the ASTM standard, fifteen specimens with different parameter combinations were printed using a low-cost FDM 3D printer to evaluate their impact properties. Statistical analysis was performed using MINITAB to validate the experimental data and model development. The experimental outcomes… More >

  • Open Access

    ARTICLE

    Energy Absorption of Thin-walled Corrugated Crash Box in Axial Crushing

    H. Ghasemnejad1, H. Hadavinia1,2, D. Marchant1, A. Aboutorabi1

    Structural Durability & Health Monitoring, Vol.4, No.1, pp. 29-46, 2008, DOI:10.3970/sdhm.2008.004.029

    Abstract In this paper the crashworthiness capabilities of thin-walled corrugated crash boxes in axial crushing relative to flat sidewall boxes from the same material are investigated. In order to achieve this, various design of corrugated aluminium alloy 6060 temper T4 crash boxes were chosen and their axial crushing behaviour under impact loading was studied by developing a theoretical model based on Super Folding Element theory and by conducting finite element analysis using LS-DYNA in ANSYS. From the theoretical and FE analysis the crush force efficiency, the specific energy absorption and the frequency and amplitude of fluctuation of the dynamic crush force… More >

  • Open Access

    ABSTRACT

    Study on Dynamic Energy Absorption Ability of Closed-cell Si-Al Foam Metals Considering Geometry Size

    Yishan Pan, Xiangfeng Lv, Zhonghua Li, XiChun Xiao

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.4, pp. 101-102, 2011, DOI:10.3970/icces.2011.016.101

    Abstract Geometry size has a great influence on energy absorption ability of closed-cell foam metals. Study on energy absorption ability of closed-cell Si-Al foam metals considering geometry size by impact experiment method. The results show that the strain and absorbing energy value are decreasing with the geometry size increasing, and also lead to the hole wall rupture or whole instability. The best height-width ratio for cube and cylinder are 1.0~1.5 and 1.0~2.0, respectively. With the increasing of material diameter, the compressive strength increasing quickly, but the strain reduces. It is clearly that height-width ratio 1.0 is better for cube and cylinder. More >

Displaying 1-10 on page 1 of 12. Per Page