Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (61)
  • Open Access

    ARTICLE

    An Energy-Efficient Cross-Layer Clustering Approach Based on Gini Index Theory for WSNs

    Deyu Lin1,2, Yujie Zhang 2, Zhiwei Hua2, Jianfeng Xu2,3,*, Yufei Zhao1, Yong Liang Guan1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1859-1882, 2025, DOI:10.32604/cmc.2025.066283 - 29 August 2025

    Abstract Energy efficiency is critical in Wireless Sensor Networks (WSNs) due to the limited power supply. While clustering algorithms are commonly used to extend network lifetime, most of them focus on single-layer optimization. To this end, an Energy-efficient Cross-layer Clustering approach based on the Gini (ECCG) index theory was proposed in this paper. Specifically, a novel mechanism of Gini Index theory-based energy-efficient Cluster Head Election (GICHE) is presented based on the Gini Index and the expected energy distribution to achieve balanced energy consumption among different clusters. In addition, to improve inter-cluster energy efficiency, a Queue synchronous More >

  • Open Access

    ARTICLE

    Energy Efficient and Resource Allocation in Cloud Computing Using QT-DNN and Binary Bird Swarm Optimization

    Puneet Sharma1, Dhirendra Prasad Yadav1, Bhisham Sharma2,*, Surbhi B. Khan3,4,*, Ahlam Almusharraf 5

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 2179-2193, 2025, DOI:10.32604/cmc.2025.063190 - 29 August 2025

    Abstract The swift expansion of cloud computing has heightened the demand for energy-efficient and high-performance resource allocation solutions across extensive systems. This research presents an innovative hybrid framework that combines a Quantum Tensor-based Deep Neural Network (QT-DNN) with Binary Bird Swarm Optimization (BBSO) to enhance resource allocation while preserving Quality of Service (QoS). In contrast to conventional approaches, the QT-DNN accurately predicts task-resource mappings using tensor-based task representation, significantly minimizing computing overhead. The BBSO allocates resources dynamically, optimizing energy efficiency and task distribution. Experimental results from extensive simulations indicate the efficacy of the suggested strategy; the… More >

  • Open Access

    ARTICLE

    An IoT-Enabled Hybrid DRL-XAI Framework for Transparent Urban Water Management

    Qamar H. Naith1,*, H. Mancy2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 387-405, 2025, DOI:10.32604/cmes.2025.066917 - 31 July 2025

    Abstract Effective water distribution and transparency are threatened with being outrightly undermined unless the good name of urban infrastructure is maintained. With improved control systems in place to check leakage, variability of pressure, and conscientiousness of energy, issues that previously went unnoticed are now becoming recognized. This paper presents a grandiose hybrid framework that combines Multi-Agent Deep Reinforcement Learning (MADRL) with Shapley Additive Explanations (SHAP)-based Explainable AI (XAI) for adaptive and interpretable water resource management. In the methodology, the agents perform decentralized learning of the control policies for the pumps and valves based on the real-time… More >

  • Open Access

    ARTICLE

    Quantum Inspired Adaptive Resource Management Algorithm for Scalable and Energy Efficient Fog Computing in Internet of Things (IoT)

    Sonia Khan1, Naqash Younas2, Musaed Alhussein3, Wahib Jamal Khan2, Muhammad Shahid Anwar4,*, Khursheed Aurangzeb3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2641-2660, 2025, DOI:10.32604/cmes.2025.060973 - 03 March 2025

    Abstract Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks. However, existing methods often fail in dynamic and high-demand environments, leading to resource bottlenecks and increased energy consumption. This study aims to address these limitations by proposing the Quantum Inspired Adaptive Resource Management (QIARM) model, which introduces novel algorithms inspired by quantum principles for enhanced resource allocation. QIARM employs a quantum superposition-inspired technique for multi-state resource representation and an adaptive learning component to adjust resources in real time dynamically. In addition, an energy-aware scheduling module minimizes power More >

  • Open Access

    ARTICLE

    SEF: A Smart and Energy-Aware Forwarding Strategy for NDN-Based Internet of Healthcare

    Naeem Ali Askar1,*, Adib Habbal1,*, Hassen Hamouda2, Abdullah Mohammad Alnajim3, Sheroz Khan4

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4625-4658, 2024, DOI:10.32604/cmc.2024.058607 - 19 December 2024

    Abstract Named Data Networking (NDN) has emerged as a promising communication paradigm, emphasizing content-centric access rather than location-based access. This model offers several advantages for Internet of Healthcare Things (IoHT) environments, including efficient content distribution, built-in security, and natural support for mobility and scalability. However, existing NDN-based IoHT systems face inefficiencies in their forwarding strategy, where identical Interest packets are forwarded across multiple nodes, causing broadcast storms, increased collisions, higher energy consumption, and delays. These issues negatively impact healthcare system performance, particularly for individuals with disabilities and chronic diseases requiring continuous monitoring. To address these challenges,… More >

  • Open Access

    ARTICLE

    Performance of Thermal Insulation of Different Composite Walls and Roofs Materials Used for Energy Efficient Building Construction in Iraq

    Ahmed Mustaffa Saleem, Abdullah A. Badr, Bahjat Hassan Alyas, Omar Rafae Alomar*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1231-1244, 2024, DOI:10.32604/fhmt.2024.053770 - 30 August 2024

    Abstract This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq. The mathematical model is solved by building its code using the Transmission Matrix Method in MATLAB software. The weather data of 21st July 2022 in Baghdad City/Iraq is selected as a test day. The wall types are selected: the first type consists of cement mortar, brick, and gypsum, the second type consists of cement mortar, brick, gypsum, and plaster and the third type… More >

  • Open Access

    ARTICLE

    A Traffic-Aware and Cluster-Based Energy Efficient Routing Protocol for IoT-Assisted WSNs

    Hina Gul1, Sana Ullah1, Ki-Il Kim2,*, Farman Ali3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1831-1850, 2024, DOI:10.32604/cmc.2024.052841 - 15 August 2024

    Abstract The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications, such as remote health monitoring, industrial monitoring, transportation, and smart agriculture. Efficient and reliable data routing is one of the major challenges in the Internet of Things network due to the heterogeneity of nodes. This paper presents a traffic-aware, cluster-based, and energy-efficient routing protocol that employs traffic-aware and cluster-based techniques to improve the data delivery in such networks. The proposed protocol divides the network into clusters where optimal cluster heads are selected among super… More >

  • Open Access

    ARTICLE

    EECLP: A Wireless Sensor Networks Energy Efficient Cross-Layer Protocol

    Mohammed Kaddi1,*, Mohammed Omari2, Moamen Alnatoor1

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2611-2631, 2024, DOI:10.32604/cmc.2024.052048 - 15 August 2024

    Abstract Recent advancements in wireless communications have allowed the birth of novel wireless sensor networks (WSN). A sensor network comprises several micro-sensors deployed randomly in an area of interest. A micro-sensor is provided with an energy resource to supply electricity to all of its components. However, the disposed energy resource is limited and battery replacement is generally infeasible. With this restriction, the sensors must conserve energy to prolong their lifetime. Various energy conservation strategies for WSNs have been presented in the literature, from the application to the physical layer. Most of these solutions focus only on… More >

  • Open Access

    CORRECTION

    Correction: Priority Based Energy Efficient MAC Protocol by Varying Data Rate for Wireless Body Area Network

    R. Sangeetha, Usha Devi Gandhi*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 859-859, 2024, DOI:10.32604/csse.2024.052487 - 20 May 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Enhancing Energy Efficiency with a Dynamic Trust Measurement Scheme in Power Distribution Network

    Yilei Wang1, Xin Sun1, Guiping Zheng2,3, Ahmar Rashid4, Sami Ullah5, Hisham Alasmary6, Muhammad Waqas7,8,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3909-3927, 2024, DOI:10.32604/cmc.2024.047767 - 26 March 2024

    Abstract The application of Intelligent Internet of Things (IIoT) in constructing distribution station areas strongly supports platform transformation, upgrade, and intelligent integration. The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer, with the former using intelligent fusion terminals for real-time data collection and processing. However, the influx of multiple low-voltage in the smart grid raises higher demands for the performance, energy efficiency, and response speed of the substation fusion terminals. Simultaneously, it brings significant security risks to the entire distribution substation, posing a major challenge to the smart grid. In… More >

Displaying 1-10 on page 1 of 61. Per Page