Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    eQUEST Based Building Energy Modeling Analysis for Energy Efficiency of Buildings

    Saroj Lamichhane1, Roseline Mostafa2, Bhaskaran Gopalakrishnan2,*, Dayakar G. Devaru3

    Energy Engineering, Vol.121, No.10, pp. 2743-2767, 2024, DOI:10.32604/ee.2024.051035

    Abstract Building energy performance is a function of numerous building parameters. In this study, sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impact on the energy performance of buildings. Actual data from two fully operational commercial buildings were collected and used to develop a building energy model in the Quick Energy Simulation Tool (eQUEST). The model is calibrated using the Normalized Mean Bias Error (NMBE) and Coefficient of Variation of Root Mean Square Error (CV(RMSE)) method. The model satisfies the NMBE and CV(RMSE) criteria set by… More > Graphic Abstract

    eQUEST Based Building Energy Modeling Analysis for Energy Efficiency of Buildings

  • Open Access

    ARTICLE

    Hyperparameter Optimization Based Deep Belief Network for Clean Buses Using Solar Energy Model

    Shekaina Justin1,*, Wafaa Saleh1,2, Tasneem Al Ghamdi1, J. Shermina3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1091-1109, 2023, DOI:10.32604/iasc.2023.032589

    Abstract Renewable energy has become a solution to the world’s energy concerns in recent years. Photovoltaic (PV) technology is the fastest technique to convert solar radiation into electricity. Solar-powered buses, metros, and cars use PV technology. Such technologies are always evolving. Included in the parameters that need to be analysed and examined include PV capabilities, vehicle power requirements, utility patterns, acceleration and deceleration rates, and storage module type and capacity, among others. PVPG is intermittent and weather-dependent. Accurate forecasting and modelling of PV system output power are key to managing storage, delivery, and smart grids. With… More >

  • Open Access

    ARTICLE

    Energy-Efficient Approaches for a Machine Tool Building in a University through Field Measurement and Energy Modelling

    Kusnandar1, Win-Jet Luo1,2, Indra Permana1, Fu-Jen Wang2,*, Gantulga Bayarkhuu2

    Energy Engineering, Vol.120, No.6, pp. 1387-1399, 2023, DOI:10.32604/ee.2023.027459

    Abstract The heating, ventilating, and air conditioning (HVAC) system consumes nearly 50% of the building’s energy, especially in Taiwan with a hot and humid climate. Due to the challenges in obtaining energy sources and the negative impacts of excessive energy use on the environment, it is essential to employ an energy-efficient HVAC system. This study conducted the machine tools building in a university. The field measurement was carried out, and the data were used to conduct energy modelling with EnergyPlus (EP) in order to discover some improvements in energy-efficient design. The validation between field measurement and… More >

  • Open Access

    ARTICLE

    Energy-Efficient UAVs Coverage Path Planning Approach

    Gamil Ahmed1, Tarek Sheltami1,*, Ashraf Mahmoud1, Ansar Yasar2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 3239-3263, 2023, DOI:10.32604/cmes.2023.022860

    Abstract Unmanned aerial vehicles (UAVs), commonly known as drones, have drawn significant consideration thanks to their agility, mobility, and flexibility features. They play a crucial role in modern reconnaissance, inspection, intelligence, and surveillance missions. Coverage path planning (CPP) which is one of the crucial aspects that determines an intelligent system’s quality seeks an optimal trajectory to fully cover the region of interest (ROI). However, the flight time of the UAV is limited due to a battery limitation and may not cover the whole region, especially in large region. Therefore, energy consumption is one of the most… More >

  • Open Access

    ARTICLE

    Evaluation of Energy Efficiency Performance of Heated Windows

    Hari Swarup Jammulamadaka1, Bhaskaran Gopalakrishnan2,*, Subodh Chaudhari3, Senthil Sundaramoorthy3, Akash Rajesh Mehta2, Roseline Mostafa2

    Energy Engineering, Vol.119, No.1, pp. 1-16, 2022, DOI:10.32604/EE.2022.017363

    Abstract Fenestration systems are widely used across the world. There is expansive research on window configurations, frames, and glazing technology, but not enough research has been published on reducing window heat loss through heat application to a pane. The presented study attempted to evaluate the performance of heated windows by developing an experimental setup to test a window at various temperatures by varying the power input to the window. Heated double pane window was installed in an insulated box. A temperature gradient was developed across the window by cooling one side of the window using gel-based… More >

  • Open Access

    ARTICLE

    Fuzzy Based Reliable Load Balanced Routing Approach for Ad hoc Sensor Networks

    J. V. Anchitaalagammai1,*, Rajesh Verma2, M. Kavitha3, A. R. Revathi4, S. R. Preethi5, Kiranmai Bellam6

    Computer Systems Science and Engineering, Vol.41, No.3, pp. 861-874, 2022, DOI:10.32604/csse.2022.021049

    Abstract Energy management and packet delivery rate are the important factors in ad hoc networks. It is the major network where nodes share the information without administration. Due to the mobility of nodes, maximum energy is spent on transmission of packets. Mostly energy is wasted on packet dropping and false route discovery. In this research work, Fuzzy Based Reliable Load Balanced Routing Approach (RLRA) is proposed to provide high energy efficiency and more network lifetime using optimal multicast route discovery mechanism. It contains three phases. In first phase, optimal multicast route discovery is initiated to resolve… More >

  • Open Access

    ARTICLE

    An Image Classification Method Based on Deep Neural Network with Energy Model

    Yang Yang1,*, Jinbao Duan1, Haitao Yu1, Zhipeng Gao1, Xuesong Qiu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.3, pp. 555-575, 2018, DOI:10.31614/cmes.2018.04249

    Abstract The development of deep learning has revolutionized image recognition technology. How to design faster and more accurate image classification algorithms has become our research interests. In this paper, we propose a new algorithm called stochastic depth networks with deep energy model (SADIE), and the model improves stochastic depth neural network with deep energy model to provide attributes of images and analysis their characteristics. First, the Bernoulli distribution probability is used to select the current layer of the neural network to prevent gradient dispersion during training. Then in the backpropagation process, the energy function is designed More >

  • Open Access

    ARTICLE

    A Coupled Magnetic-Elastic-Thermal Free-Energy Model with Hysteretic Nonlinearity for Terfenol-D Rods

    Tian-Zhong Wang1, You-He Zhou1,2

    CMC-Computers, Materials & Continua, Vol.21, No.1, pp. 41-64, 2011, DOI:10.3970/cmc.2011.021.041

    Abstract Based on the thermodynamic theory and the postulates of Jiles and Atherton, a general coupled magnetic-elastic-thermal free-energy model with hysteretic nonlinearity is established for Terfenol-D rods, in which the effect of Weiss molecular field is incorporated. The quantitative agreement between numerical simulation results predicted by the free-energy model and existing experimental data confirms the validity and reliability of the obtained nonlinear theoretical model, and indicates that the free-energy model can accurately capture the nonlinear hysteresis characteristic of Terfenol-D. Meanwhile, the free-energy model is employed to investigate the influences of mechanical stress and the temperature on… More >

Displaying 1-10 on page 1 of 8. Per Page