Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (331)
  • Open Access

    ARTICLE

    Radial Basis Approximations Based BEMD for Enhancement of Non-Uniform Illumination Images

    Anchal Tyagi1, Salem Alelyani2, Sapna Katiyar3, Mohammad Rashid Hussain2,*, Rijwan Khan3, Mohammed Saleh Alsaqer2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1423-1438, 2023, DOI:10.32604/csse.2023.026057 - 03 November 2022

    Abstract An image can be degraded due to many environmental factors like foggy or hazy weather, low light conditions, extra light conditions etc. Image captured under the poor light conditions is generally known as non-uniform illumination image. Non-uniform illumination hides some important information present in an image during the image capture Also, it degrades the visual quality of image which generates the need for enhancement of such images. Various techniques have been present in literature for the enhancement of such type of images. In this paper, a novel architecture has been proposed for enhancement of poor… More >

  • Open Access

    ARTICLE

    Pixel’s Quantum Image Enhancement Using Quantum Calculus

    Husam Yahya1, Dumitru Baleanu2,3,4, Rabha W. Ibrahim5,*, Nadia M.G. Al-Saidi6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2531-2539, 2023, DOI:10.32604/cmc.2023.033282 - 31 October 2022

    Abstract The current study provides a quantum calculus-based medical image enhancement technique that dynamically chooses the spatial distribution of image pixel intensity values. The technique focuses on boosting the edges and texture of an image while leaving the smooth areas alone. The brain Magnetic Resonance Imaging (MRI) scans are used to visualize the tumors that have spread throughout the brain in order to gain a better understanding of the stage of brain cancer. Accurately detecting brain cancer is a complex challenge that the medical system faces when diagnosing the disease. To solve this issue, this research… More >

  • Open Access

    ARTICLE

    SRResNet Performance Enhancement Using Patch Inputs and Partial Convolution-Based Padding

    Safi Ullah1,2, Seong-Ho Song1,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2999-3014, 2023, DOI:10.32604/cmc.2023.032326 - 31 October 2022

    Abstract Due to highly underdetermined nature of Single Image Super-Resolution (SISR) problem, deep learning neural networks are required to be more deeper to solve the problem effectively. One of deep neural networks successful in the Super-Resolution (SR) problem is ResNet which can render the capability of deeper networks with the help of skip connections. However, zero padding (ZP) scheme in the network restricts benefits of skip connections in SRResNet and its performance as the ratio of the number of pure input data to that of zero padded data increases. In this paper. we consider the ResNet More >

  • Open Access

    ARTICLE

    An Optimal DPM Based Energy-Aware Task Scheduling for Performance Enhancement in Embedded MPSoC

    Hamayun Khan1,*, Irfan Ud Din2, Arshad Ali3, Mohammad Husain3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2097-2113, 2023, DOI:10.32604/cmc.2023.032999 - 22 September 2022

    Abstract Minimizing the energy consumption to increase the life span and performance of multiprocessor system on chip (MPSoC) has become an integral chip design issue for multiprocessor systems. The performance measurement of computational systems is changing with the advancement in technology. Due to shrinking and smaller chip size power densities on-chip are increasing rapidly that increasing chip temperature in multi-core embedded technologies. The operating speed of the device decreases when power consumption reaches a threshold that causes a delay in complementary metal oxide semiconductor (CMOS) circuits because high on-chip temperature adversely affects the life span of… More >

  • Open Access

    ARTICLE

    Deep Learning-based Environmental Sound Classification Using Feature Fusion and Data Enhancement

    Rashid Jahangir1,*, Muhammad Asif Nauman2, Roobaea Alroobaea3, Jasem Almotiri3, Muhammad Mohsin Malik1, Sabah M. Alzahrani3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1069-1091, 2023, DOI:10.32604/cmc.2023.032719 - 22 September 2022

    Abstract Environmental sound classification (ESC) involves the process of distinguishing an audio stream associated with numerous environmental sounds. Some common aspects such as the framework difference, overlapping of different sound events, and the presence of various sound sources during recording make the ESC task much more complicated and complex. This research is to propose a deep learning model to improve the recognition rate of environmental sounds and reduce the model training time under limited computation resources. In this research, the performance of transformer and convolutional neural networks (CNN) are investigated. Seven audio features, chromagram, Mel-spectrogram, tonnetz,… More >

  • Open Access

    ARTICLE

    Performance Enhancement of Adaptive Neural Networks Based on Learning Rate

    Swaleha Zubair1, Anjani Kumar Singha1, Nitish Pathak2, Neelam Sharma3, Shabana Urooj4,*, Samia Rabeh Larguech4

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2005-2019, 2023, DOI:10.32604/cmc.2023.031481 - 22 September 2022

    Abstract Deep learning is the process of determining parameters that reduce the cost function derived from the dataset. The optimization in neural networks at the time is known as the optimal parameters. To solve optimization, it initialize the parameters during the optimization process. There should be no variation in the cost function parameters at the global minimum. The momentum technique is a parameters optimization approach; however, it has difficulties stopping the parameter when the cost function value fulfills the global minimum (non-stop problem). Moreover, existing approaches use techniques; the learning rate is reduced during the iteration… More >

  • Open Access

    ARTICLE

    Speech Enhancement via Mask-Mapping Based Residual Dense Network

    Lin Zhou1,*, Xijin Chen1, Chaoyan Wu1, Qiuyue Zhong1, Xu Cheng2, Yibin Tang3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1259-1277, 2023, DOI:10.32604/cmc.2023.027379 - 22 September 2022

    Abstract Masking-based and spectrum mapping-based methods are the two main algorithms of speech enhancement with deep neural network (DNN). But the mapping-based methods only utilizes the phase of noisy speech, which limits the upper bound of speech enhancement performance. Masking-based methods need to accurately estimate the masking which is still the key problem. Combining the advantages of above two types of methods, this paper proposes the speech enhancement algorithm MM-RDN (masking-mapping residual dense network) based on masking-mapping (MM) and residual dense network (RDN). Using the logarithmic power spectrogram (LPS) of consecutive frames, MM estimates the ideal… More >

  • Open Access

    ARTICLE

    An Integrated Oil Production Enhancement Technology Based on Waterflooding Energy Recovery

    Aleksandr Lekomtsev1,*, Vitaliy Bakaneev1, Ivan Stepanenko1, Petr Maximov1, Yulia Rozhkova1, Alexey Dengaev2, Wanli Kang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 285-301, 2023, DOI:10.32604/fdmp.2022.019809 - 29 August 2022

    Abstract A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed. After providing an extensive review of the existing scientific and technical literature on this subject, the proposed integrated technology is described together with the related process flow diagram, the criteria used to select a target facility for its implementation and the outcomes of the laboratory studies conducted to analyze emulsion formation and separation kinetics. Moreover, the outcomes of numerical simulations performed using Ansys CFX software are also presented. According to these results, using the proposed approach the incremental oil production may More >

  • Open Access

    ARTICLE

    An Intelligent Intrusion Detection System in Smart Grid Using PRNN Classifier

    P. Ganesan1,*, S. Arockia Edwin Xavier2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2979-2996, 2023, DOI:10.32604/iasc.2023.029264 - 17 August 2022

    Abstract Typically, smart grid systems enhance the ability of conventional power system networks as it is vulnerable to several kinds of attacks. These vulnerabilities might cause the attackers or intruders to collapse the entire network system thus breaching the confidentiality and integrity of smart grid systems. Thus, for this purpose, Intrusion detection system (IDS) plays a pivotal part in offering a reliable and secured range of services in the smart grid framework. Several existing approaches are there to detect the intrusions in smart grid framework, however they are utilizing an old dataset to detect anomaly thus… More >

  • Open Access

    ARTICLE

    Hybrid Approach for Privacy Enhancement in Data Mining Using Arbitrariness and Perturbation

    B. Murugeshwari1,*, S. Rajalakshmi1, K. Sudharson2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2293-2307, 2023, DOI:10.32604/csse.2023.029074 - 01 August 2022

    Abstract Imagine numerous clients, each with personal data; individual inputs are severely corrupt, and a server only concerns the collective, statistically essential facets of this data. In several data mining methods, privacy has become highly critical. As a result, various privacy-preserving data analysis technologies have emerged. Hence, we use the randomization process to reconstruct composite data attributes accurately. Also, we use privacy measures to estimate how much deception is required to guarantee privacy. There are several viable privacy protections; however, determining which one is the best is still a work in progress. This paper discusses the… More >

Displaying 171-180 on page 18 of 331. Per Page