Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Fusing Geometric and Temporal Deep Features for High-Precision Arabic Sign Language Recognition

    Yazeed Alkhrijah1,2, Shehzad Khalid3, Syed Muhammad Usman4,*, Amina Jameel3, Danish Hamid5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1113-1141, 2025, DOI:10.32604/cmes.2025.068726 - 31 July 2025

    Abstract Arabic Sign Language (ArSL) recognition plays a vital role in enhancing the communication for the Deaf and Hard of Hearing (DHH) community. Researchers have proposed multiple methods for automated recognition of ArSL; however, these methods face multiple challenges that include high gesture variability, occlusions, limited signer diversity, and the scarcity of large annotated datasets. Existing methods, often relying solely on either skeletal data or video-based features, struggle with generalization and robustness, especially in dynamic and real-world conditions. This paper proposes a novel multimodal ensemble classification framework that integrates geometric features derived from 3D skeletal joint… More >

  • Open Access

    ARTICLE

    Drift Detection Method Using Distance Measures and Windowing Schemes for Sentiment Classification

    Idris Rabiu1,3,*, Naomie Salim2, Maged Nasser1,4, Aminu Da’u1, Taiseer Abdalla Elfadil Eisa5, Mhassen Elnour Elneel Dalam6

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6001-6017, 2023, DOI:10.32604/cmc.2023.035221 - 28 December 2022

    Abstract Textual data streams have been extensively used in practical applications where consumers of online products have expressed their views regarding online products. Due to changes in data distribution, commonly referred to as concept drift, mining this data stream is a challenging problem for researchers. The majority of the existing drift detection techniques are based on classification errors, which have higher probabilities of false-positive or missed detections. To improve classification accuracy, there is a need to develop more intuitive detection techniques that can identify a great number of drifts in the data streams. This paper presents… More >

  • Open Access

    ARTICLE

    Germination Quality Prognosis: Classifying Spectroscopic Images of the Seed Samples

    Saud S. Alotaibi*

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1815-1829, 2023, DOI:10.32604/iasc.2023.029446 - 19 July 2022

    Abstract One of the most critical objectives of precision farming is to assess the germination quality of seeds. Modern models contribute to this field primarily through the use of artificial intelligence techniques such as machine learning, which present difficulties in feature extraction and optimization, which are critical factors in predicting accuracy with few false alarms, and another significant difficulty is assessing germination quality. Additionally, the majority of these contributions make use of benchmark classification methods that are either inept or too complex to train with the supplied features. This manuscript addressed these issues by introducing a More >

Displaying 1-10 on page 1 of 3. Per Page