Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (363)
  • Open Access

    ARTICLE

    Efficient One-Way Time Synchronization for VANET with MLE-Based Multi-Stage Update

    Hyeontae Joo, Sangmin Lee, Kiseok Kim, Hwangnam Kim*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2789-2804, 2025, DOI:10.32604/cmc.2025.066304 - 03 July 2025

    Abstract As vehicular networks become increasingly pervasive, enhancing connectivity and reliability has emerged as a critical objective. Among the enabling technologies for advanced wireless communication, particularly those targeting low latency and high reliability, time synchronization is critical, especially in vehicular networks. However, due to the inherent mobility of vehicular environments, consistently exchanging synchronization packets with a fixed base station or access point is challenging. This issue is further exacerbated in signal shadowed areas such as urban canyons, tunnels, or large-scale indoor halls where other technologies, such as global navigation satellite system (GNSS), are unavailable. One-way synchronization… More >

  • Open Access

    ARTICLE

    Unsupervised Monocular Depth Estimation with Edge Enhancement for Dynamic Scenes

    Peicheng Shi1,*, Yueyue Tang1, Yi Li1, Xinlong Dong1, Yu Sun2, Aixi Yang3

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3321-3343, 2025, DOI:10.32604/cmc.2025.065297 - 03 July 2025

    Abstract In the dynamic scene of autonomous vehicles, the depth estimation of monocular cameras often faces the problem of inaccurate edge depth estimation. To solve this problem, we propose an unsupervised monocular depth estimation model based on edge enhancement, which is specifically aimed at the depth perception challenge in dynamic scenes. The model consists of two core networks: a deep prediction network and a motion estimation network, both of which adopt an encoder-decoder architecture. The depth prediction network is based on the U-Net structure of ResNet18, which is responsible for generating the depth map of the… More >

  • Open Access

    ARTICLE

    Image-Based Air Quality Estimation by Few-Shot Learning

    Duc Cuong Pham1, Tien Duc Ngo2, Hoai Nam Vu1,3,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2959-2974, 2025, DOI:10.32604/cmc.2025.064672 - 03 July 2025

    Abstract Air quality estimation assesses the pollution level in the air, supports public health warnings, and is a valuable tool in environmental management. Although air sensors have proven helpful in this task, sensors are often expensive and difficult to install, while cameras are becoming more popular and accessible, from which images can be collected as data for deep learning models to solve the above task. This leads to another problem: several labeled images are needed to achieve high accuracy when deep-learning models predict air quality. In this research, we have three main contributions: (1) Collect and… More >

  • Open Access

    ARTICLE

    On Progressive-Stress ALT under Generalized Progressive Hybrid Censoring Scheme for Quasi Xgamma Distribution

    Ehab M. Almetwally1,*, O. M. Khaled2, H. M. Barakat3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2957-2990, 2025, DOI:10.32604/cmes.2025.065446 - 30 June 2025

    Abstract Accelerated life tests play a vital role in reliability analysis, especially as advanced technologies lead to the production of highly reliable products to meet market demands and competition. Among these tests, progressive-stress accelerated life tests (PSALT) allow for continuous changes in applied stress. Additionally, the generalized progressive hybrid censoring (GPHC) scheme has attracted significant attention in reliability and survival analysis, particularly for handling censored data in accelerated testing. It has been applied to various failure models, including competing risks and step-stress models. However, despite its growing relevance, a notable gap remains in the literature regarding… More >

  • Open Access

    ARTICLE

    Aerial Object Tracking with Attention Mechanisms: Accurate Motion Path Estimation under Moving Camera Perspectives

    Yu-Shiuan Tsai*, Yuk-Hang Sit

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3065-3090, 2025, DOI:10.32604/cmes.2025.064783 - 30 June 2025

    Abstract To improve small object detection and trajectory estimation from an aerial moving perspective, we propose the Aerial View Attention-PRB (AVA-PRB) model. AVA-PRB integrates two attention mechanisms—Coordinate Attention (CA) and the Convolutional Block Attention Module (CBAM)—to enhance detection accuracy. Additionally, Shape-IoU is employed as the loss function to refine localization precision. Our model further incorporates an adaptive feature fusion mechanism, which optimizes multi-scale object representation, ensuring robust tracking in complex aerial environments. We evaluate the performance of AVA-PRB on two benchmark datasets: Aerial Person Detection and VisDrone2019-Det. The model achieves 60.9% mAP@0.5 on the Aerial Person… More >

  • Open Access

    REVIEW

    Bridging 2D and 3D Object Detection: Advances in Occlusion Handling through Depth Estimation

    Zainab Ouardirhi1,2,*, Mostapha Zbakh2, Sidi Ahmed Mahmoudi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2509-2571, 2025, DOI:10.32604/cmes.2025.064283 - 30 June 2025

    Abstract Object detection in occluded environments remains a core challenge in computer vision (CV), especially in domains such as autonomous driving and robotics. While Convolutional Neural Network (CNN)-based two-dimensional (2D) and three-dimensional (3D) object detection methods have made significant progress, they often fall short under severe occlusion due to depth ambiguities in 2D imagery and the high cost and deployment limitations of 3D sensors such as Light Detection and Ranging (LiDAR). This paper presents a comparative review of recent 2D and 3D detection models, focusing on their occlusion-handling capabilities and the impact of sensor modalities such More >

  • Open Access

    ARTICLE

    Collaborative State Estimation for Coupled Transmission and Distribution Systems Based on Clustering Analysis and Equivalent Measurement Modeling

    Hao Jiao1, Xinyu Liu2, Chen Wu1, Chunlei Xu1, Zhijun Zhou3, Ye Chen3, Guoqiang Sun2,*

    Energy Engineering, Vol.122, No.7, pp. 2977-2992, 2025, DOI:10.32604/ee.2025.064206 - 27 June 2025

    Abstract With the continuous expansion of the power system scale and the increasing complexity of operational mode, the interaction between transmission and distribution systems is becoming more and more significant, placing higher requirements on the accuracy and efficiency of the power system state estimation to address the challenge of balancing computational efficiency and estimation accuracy in traditional coupled transmission and distribution state estimation methods, this paper proposes a collaborative state estimation method based on distribution systems state clustering and load model parameter identification. To resolve the scalability issue of coupled transmission and distribution power systems, clustering… More >

  • Open Access

    ARTICLE

    A Stacked BWO-NIGP Framework for Robust and Accurate SOH Estimation of Lithium-Ion Batteries under Noisy and Small-Sample Scenarios

    Pu Yang1,*, Wanning Yan1, Rong Li1, Lei Chen2, Lijie Guo2

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 699-725, 2025, DOI:10.32604/cmc.2025.064947 - 09 June 2025

    Abstract Lithium-ion batteries (LIBs) have been widely used in mobile energy storage systems because of their high energy density, long life, and strong environmental adaptability. Accurately estimating the state of health (SOH) for LIBs is promising and has been extensively studied for many years. However, the current prediction methods are susceptible to noise interference, and the estimation accuracy has room for improvement. Motivated by this, this paper proposes a novel battery SOH estimation method, the Beluga Whale Optimization (BWO) and Noise-Input Gaussian Process (NIGP) Stacked Model (BGNSM). This method integrates the BWO-optimized Gaussian Process Regression (GPR)… More >

  • Open Access

    REVIEW

    Monocular 3D Human Pose Estimation for REBA Ergonomics: A Critical Review of Recent Advances

    Ahmad Mwfaq Bataineh1,2,*, Ahmad Sufril Azlan Mohamed1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 93-124, 2025, DOI:10.32604/cmc.2025.064250 - 09 June 2025

    Abstract Advancements in deep learning have considerably enhanced techniques for Rapid Entire Body Assessment (REBA) pose estimation by leveraging progress in three-dimensional human modeling. This survey provides an extensive overview of recent advancements, particularly emphasizing monocular image-based methodologies and their incorporation into ergonomic risk assessment frameworks. By reviewing literature from 2016 to 2024, this study offers a current and comprehensive analysis of techniques, existing challenges, and emerging trends in three-dimensional human pose estimation. In contrast to traditional reviews organized by learning paradigms, this survey examines how three-dimensional pose estimation is effectively utilized within musculoskeletal disorder (MSD)… More >

  • Open Access

    ARTICLE

    Design of Chaos Induced Aquila Optimizer for Parameter Estimation of Electro-Hydraulic Control System

    Khizer Mehmood1, Naveed Ishtiaq Chaudhary2,*, Zeshan Aslam Khan3, Khalid Mehmood Cheema4, Muhammad Asif Zahoor Raja2, Sultan S. Alshamrani5, Kaled M. Alshmrany6

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1809-1841, 2025, DOI:10.32604/cmes.2025.064900 - 30 May 2025

    Abstract Aquila Optimizer (AO) is a recently proposed population-based optimization technique inspired by Aquila’s behavior in catching prey. AO is applied in various applications and its numerous variants were proposed in the literature. However, chaos theory has not been extensively investigated in AO. Moreover, it is still not applied in the parameter estimation of electro-hydraulic systems. In this work, ten well-defined chaotic maps were integrated into a narrowed exploitation of AO for the development of a robust chaotic optimization technique. An extensive investigation of twenty-three mathematical benchmarks and ten IEEE Congress on Evolutionary Computation (CEC) functions… More >

Displaying 1-10 on page 1 of 363. Per Page