Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    SIMULATION AND OPTIMIZATION OF MULTISTAGE COMPRESSED DMR NATURAL GAS LIQUEFACTION PROCESS

    Rongge Xiaoa,*, Yanwei Zhanga , Xu Gaob , Hongping Yuc , Wangying Weia

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-8, 2020, DOI:10.5098/hmt.15.22

    Abstract In order to improve DMR (double mixed refrigerant) liquefaction process and reduce operation cost of natural gas liquefaction plant, a four-stage DMR process optimization simulation calculation model was established through Aspen Hysys v8.4 and the purpose of the optimization model is achieved by using the segmented compression process in this paper. The minimum energy consumption and the highest exergy efficiency were used as the objective functions. By using the optimizer in HYSYS, the process parameters and ingredient proportion of the mixed refrigerant in the fourstage DMR process was optimized, and the best process parameters and ingredient proportion of the mixed… More >

  • Open Access

    ARTICLE

    Correlation Analysis of Wind Turbine Temperature Rise and Exergy Efficiency Based on Field-Path Coupling

    Caifeng Wen1,2, Qiang Wang1,*, Yang Cao1, Liru Zhang1,2, Wenxin Wang3, Boxin Zhang1, Qian Du1

    Energy Engineering, Vol.120, No.7, pp. 1603-1619, 2023, DOI:10.32604/ee.2023.027074

    Abstract To solve the problems of large losses and low productivity of permanent magnet synchronous generators used in wind power systems, the field-circuit coupling method is used to accurately solve the electromagnetic field and temperature field of the generator. The loss distribution of the motor is accurately obtained by considering the influence of external circuit characteristics on its internal physical field. By mapping the losses to the corresponding part of the three-dimensional finite element model of the motor, the temperature field is solved, and the global temperature distribution of the generator, considering the influence of end windings, is obtained. By changing… More >

  • Open Access

    ARTICLE

    ANALYSIS OF POWER GENERATION PROCESS EXERGY EFFICIENCY OF LARGE CDQ WASTE HEAT BOILER UNDER THE BACKGROUND OF DOUBLE CARBON

    Tieming Wanga , Fuyong Sub,*

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-4, 2023, DOI:10.5098/hmt.20.12

    Abstract This paper analyzes the power generation technology of coke dry quenching (CDQ) waste heat boiler, and compares the exergy efficiency of medium temperature medium pressure boiler and high temperature high pressure boiler. The scheme of high temperature ultrahigh pressure primary intermediate reheat boiler to further improve the power generation efficiency of CDQ waste heat is put forward, and the exergy efficiency is analyzed. The bottleneck problem of further improving power generation efficiency by CDQ waste heat power generation and the exergy efficiency limit under the current process conditions are obtained. More >

  • Open Access

    ARTICLE

    Optimization of a Single Flash Geothermal Power Plant Powered by a Trans-Critical Carbon Dioxide Cycle Using Genetic Algorithm and Nelder-Mead Simplex Method

    Yashar Aryanfar1,*, Jorge Luis García Alcaraz2

    Energy Engineering, Vol.120, No.2, pp. 263-275, 2023, DOI:10.32604/ee.2023.022587

    Abstract The usage of renewable energies, including geothermal energy, is expanding rapidly worldwide. The low efficiency of geothermal cycles has consistently highlighted the importance of recovering heat loss for these cycles. This paper proposes a combined power generation cycle (single flash geothermal cycle with trans-critical CO2 cycle) and simulates in the EES (Engineering Equation Solver) software. The results show that the design parameters of the proposed system are significantly improved compared to the BASIC single flash cycle. Then, the proposed approach is optimized using the genetic algorithm and the Nelder-Mead Simplex method. Separator pressure, steam turbine output pressure, and CO2 turbine… More > Graphic Abstract

    Optimization of a Single Flash Geothermal Power Plant Powered by a Trans-Critical Carbon Dioxide Cycle Using Genetic Algorithm and Nelder-Mead Simplex Method

  • Open Access

    ARTICLE

    Optimization Study on Regenerative Organic Rankine Cycle (ORC) with Heat Source of Low-Grade Steam

    Zhao Wang1, Su Yan1, Mingfeng Zhu1, Wen Zhu1, Han Zhang2, Xiang Gou2,*

    Energy Engineering, Vol.119, No.6, pp. 2569-2584, 2022, DOI:10.32604/ee.2022.020644

    Abstract Aiming at improving the performance of Organic Rankine Cycle (ORC) system with low-grade steam as heat source, this work studied and optimized the main operating parameters of the ORC system. The effects of evaporation temperature, superheat degree, condensation temperature and regenerator pinch temperature difference on the system performance were obtained. The optimization for the operating parameters is based on the indicators of specific net power output, waste heat pollution, cycle exergy efficiency, and total UA value (the product of overall heat transfer coefficient and heat transfer area of heat exchanger). The results show that the increase of the evaporation temperature… More >

Displaying 1-10 on page 1 of 5. Per Page