Asma Batool1, Fahad Ahmed1, Naila Sammar Naz1, Ayman Altameem2, Ateeq Ur Rehman3,4, Khan Muhammad Adnan5,*, Ahmad Almogren6,*
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4129-4152, 2025, DOI:10.32604/cmes.2025.073149
- 23 December 2025
Abstract Early and accurate cancer diagnosis through medical imaging is crucial for guiding treatment and enhancing patient survival. However, many state-of-the-art deep learning (DL) methods remain opaque and lack clinical interpretability. This paper presents an explainable artificial intelligence (XAI) framework that combines a fine-tuned Visual Geometry Group 16-layer network (VGG16) convolutional neural network with layer-wise relevance propagation (LRP) to deliver high-performance classification and transparent decision support. This approach is evaluated on the publicly available Kaggle kidney cancer imaging dataset, which comprises labeled cancerous and non-cancerous kidney scans. The proposed model achieved 98.75% overall accuracy, with precision, More >