Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (71)
  • Open Access

    ARTICLE

    Analytical Modeling of Internal Thermal Mass: Transient Heat Conduction in a Sphere under Constant, Exponential, and Periodic Ambient Temperatures

    Liangjian Lei1,2, Yihang Lu1,2,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 2109-2126, 2025, DOI:10.32604/fhmt.2025.072643 - 31 December 2025

    Abstract Internal thermal mass, such as furniture and partitions, plays a crucial role in enhancing building energy efficiency and indoor thermal comfort by passively regulating temperature fluctuations. However, the irregular geometry of these elements poses a significant challenge for accurate modeling in building energy simulations. This study addresses this gap by developing a rigorous analytical model that idealizes internal thermal mass as a sphere, thereby capturing multi-directional heat conduction effects that are neglected in simpler one-dimensional slab models. The transient heat conduction within the sphere is solved analytically using Duhamel’s theorem for three representative indoor air… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Heat and Mass Transfer in Tangent Hyperbolic Fluids Using a Two-Stage Exponential Integrator with Compact Spatial Discretization

    Mairaj Bibi1, Muhammad Shoaib Arif 2, Yasir Nawaz3, Nabil Kerdid4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 537-569, 2025, DOI:10.32604/cmes.2025.070362 - 30 October 2025

    Abstract This study develops a high-order computational scheme for analyzing unsteady tangent hyperbolic fluid flow with variable thermal conductivity, thermal radiation, and coupled heat and mass transfer effects. A modified two-stage Exponential Time Integrator is introduced for temporal discretization, providing second-order accuracy in time. A compact finite difference method is employed for spatial discretization, yielding sixth-order accuracy at most grid points. The proposed framework ensures numerical stability and convergence when solving stiff, nonlinear parabolic systems arising in fluid flow and heat transfer problems. The novelty of the work lies in combining exponential integrator schemes with compact… More >

  • Open Access

    ARTICLE

    Magneto-Electro-Elastic 3D Coupling in Free Vibrations of Layered Plates

    Salvatore Brischetto*, Domenico Cesare, Tommaso Mondino

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4491-4518, 2025, DOI:10.32604/cmc.2025.068518 - 23 October 2025

    Abstract A three-dimensional (3D) analytical formulation is proposed to put together magnetic, electric and elastic fields to analyze the vibration modes of simply-supported layered piezo-electro-magnetic plates. The present 3D model allows analyses for layered smart plates in both open-circuit and closed-circuit configurations. The second-order differential equations written in the mixed curvilinear reference system govern the magneto-electro-elastic free vibration problem for multilayered plates. This set consists of the 3D equations of motion and the 3D divergence equations for the magnetic induction and electric displacement. Navier harmonic forms in the planar directions and the exponential matrix method in… More >

  • Open Access

    ARTICLE

    A Flexible Exponential Log-Logistic Distribution for Modeling Complex Failure Behaviors in Reliability and Engineering Data

    Hadeel AlQadi1, Fatimah M. Alghamdi2, Hamada H. Hassan3, Mohamed E. Mead4, Ahmed Z. Afify5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2029-2061, 2025, DOI:10.32604/cmes.2025.069801 - 31 August 2025

    Abstract Parametric survival models are essential for analyzing time-to-event data in fields such as engineering and biomedicine. While the log-logistic distribution is popular for its simplicity and closed-form expressions, it often lacks the flexibility needed to capture complex hazard patterns. In this article, we propose a novel extension of the classical log-logistic distribution, termed the new exponential log-logistic (NExLL) distribution, designed to provide enhanced flexibility in modeling time-to-event data with complex failure behaviors. The NExLL model incorporates a new exponential generator to expand the shape adaptability of the baseline log-logistic distribution, allowing it to capture a… More >

  • Open Access

    ARTICLE

    Hybrid Wavelet Methods for Nonlinear Multi-Term Caputo Variable-Order Partial Differential Equations

    Junseo Lee1, Bongsoo Jang1, Umer Saeed1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2165-2189, 2025, DOI:10.32604/cmes.2025.069023 - 31 August 2025

    Abstract In recent years, variable-order fractional partial differential equations have attracted growing interest due to their enhanced ability to model complex physical phenomena with memory and spatial heterogeneity. However, existing numerical methods often struggle with the computational challenges posed by such equations, especially in nonlinear, multi-term formulations. This study introduces two hybrid numerical methods—the Linear-Sine and Cosine (L1-CAS) and fast-CAS schemes—for solving linear and nonlinear multi-term Caputo variable-order (CVO) fractional partial differential equations. These methods combine CAS wavelet-based spatial discretization with L1 and fast algorithms in the time domain. A key feature of the approach is More >

  • Open Access

    ARTICLE

    A New Extension Odd Generalized Exponential Model Using Type-II Progressive Censoring and Its Applications in Engineering and Medicine

    Zohra A. Esaadi1, Rabab S. Gomaa1, Beih S. El-Desouky1, Ehab M. Almetwally2, Alia M. Magar1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2063-2097, 2025, DOI:10.32604/cmes.2025.065604 - 31 August 2025

    Abstract A new extended distribution called the Odd Exponential Generalized Exponential-Exponential distribution is proposed based on generalization of the odd generalized exponential family (OEGE-E). The statistical properties of the proposed distribution are derived. The study evaluates the accuracy of six estimation methods under complete samples. Estimation techniques include maximum likelihood, ordinary least squares, weighted least squares, maximum product of spacing, Cramer von Mises, and Anderson-Darling methods. Two methods of estimation for the involved parameters are considered based on progressively type II censored data (PTIIC). These methods are maximum likelihood and maximum product of spacing. The proposed More >

  • Open Access

    ARTICLE

    High Accuracy Simulation of Electro-Thermal Flow for Non-Newtonian Fluids in BioMEMS Applications

    Umer Farooq1, Nabil Kerdid2,*, Yasir Nawaz3, Muhammad Shoaib Arif 4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 873-898, 2025, DOI:10.32604/cmes.2025.066800 - 31 July 2025

    Abstract In this study, we proposed a numerical technique for solving time-dependent partial differential equations that arise in the electro-osmotic flow of Carreau fluid across a stationary plate based on a modified exponential integrator. The scheme is comprised of two explicit stages. One is the exponential integrator type stage, and the second is the Runge-Kutta type stage. The spatial-dependent terms are discretized using the compact technique. The compact scheme can achieve fourth or sixth-order spatial accuracy, while the proposed scheme attains second-order temporal accuracy. Also, a mathematical model for the electro-osmotic flow of Carreau fluid over… More >

  • Open Access

    ARTICLE

    3D Exact Magneto-Electro-Elastic Static Analysis of Multilayered Plates

    Salvatore Brischetto*, Domenico Cesare, Tommaso Mondino

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 643-668, 2025, DOI:10.32604/cmes.2025.066313 - 31 July 2025

    Abstract This study proposes a three-dimensional (3D) coupled magneto-electro-elastic problem for the static analysis of multilayered plates embedding piezomagnetic and piezoelectric layers by considering both sensor and actuator configurations. The 3D governing equations for the magneto-electro-elastic static behavior of plates are explicitly show that are made by the three 3D equilibrium equations, the 3D divergence equation for magnetic induction, and the 3D divergence equation for the electric displacement. The proposed solution involves the exponential matrix in the thickness direction and primary variables’ harmonic forms in the in-plane ones. A closed-form solution is performed considering simply-supported boundary… More >

  • Open Access

    ARTICLE

    Chemical Reaction on Williamson Nanofluid’s Radiative MHD Dissipative Stagnation Point Flow over an Exponentially Inclined Stretching Surface with Multi-Slip Effects

    P. Saila Kumari1, S. Mohammed Ibrahim1, Giulio Lorenzini2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1839-1863, 2024, DOI:10.32604/fhmt.2024.057760 - 19 December 2024

    Abstract A wide range of technological and industrial domains, including heating processors, electrical systems, mechanical systems, and others, are facing issues as a result of the recent developments in heat transmission. Nanofluids are a novel type of heat transfer fluid that has the potential to provide solutions that will improve energy transfer. The current study investigates the effect of a magnetic field on the two-dimensional flow of Williamson nanofluid over an exponentially inclined stretched sheet. This investigation takes into account the presence of multi-slip effects. We also consider the influence of viscous dissipation, thermal radiation, chemical… More >

  • Open Access

    ARTICLE

    Bayesian and Non-Bayesian Analysis for the Sine Generalized Linear Exponential Model under Progressively Censored Data

    Naif Alotaibi1, A. S. Al-Moisheer2, Ibrahim Elbatal1, Mohammed Elgarhy3,4, Ehab M. Almetwally1,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2795-2823, 2024, DOI:10.32604/cmes.2024.049188 - 08 July 2024

    Abstract This article introduces a novel variant of the generalized linear exponential (GLE) distribution, known as the sine generalized linear exponential (SGLE) distribution. The SGLE distribution utilizes the sine transformation to enhance its capabilities. The updated distribution is very adaptable and may be efficiently used in the modeling of survival data and dependability issues. The suggested model incorporates a hazard rate function (HRF) that may display a rising, J-shaped, or bathtub form, depending on its unique characteristics. This model includes many well-known lifespan distributions as separate sub-models. The suggested model is accompanied with a range of More >

Displaying 1-10 on page 1 of 71. Per Page