Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (61)
  • Open Access

    ARTICLE

    Unsteady MHD Casson Nanofluid Flow Past an Exponentially Accelerated Vertical Plate: An Analytical Strategy

    T. Aghalya, R. Tamizharasi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 431-460, 2024, DOI:10.32604/cmes.2024.046635

    Abstract In this study, the characteristics of heat transfer on an unsteady magnetohydrodynamic (MHD) Casson nanofluid over an exponentially accelerated vertical porous plate with rotating effects were investigated. The flow was driven by the combined effects of the magnetic field, heat radiation, heat source/sink and chemical reaction. Copper oxide () and titanium oxide () are acknowledged as nanoparticle materials. The nondimensional governing equations were subjected to the Laplace transformation technique to derive closed-form solutions. Graphical representations are provided to analyze how changes in physical parameters, such as the magnetic field, heat radiation, heat source/sink and chemical reaction, affect the velocity, temperature… More >

  • Open Access

    ARTICLE

    Enhanced Differentiable Architecture Search Based on Asymptotic Regularization

    Cong Jin1, Jinjie Huang1,2,*, Yuanjian Chen1, Yuqing Gong1

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1547-1568, 2024, DOI:10.32604/cmc.2023.047489

    Abstract In differentiable search architecture search methods, a more efficient search space design can significantly improve the performance of the searched architecture, thus requiring people to carefully define the search space with different complexity according to various operations. Meanwhile rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture search. With this in mind, we propose a faster and more efficient differentiable architecture search method, AllegroNAS. Firstly, we introduce a more efficient search space enriched by the introduction of two redefined convolution modules. Secondly, we utilize a more efficient architectural parameter regularization… More >

  • Open Access

    ARTICLE

    Efficiency of a Modular Cleanroom for Space Applications

    Matthew R. Coburn1, Charlie Young2, Chris Smith2, Graham Schultz2, Miguel Robayo3, Zheng-Tong Xie1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 547-562, 2024, DOI:10.32604/fdmp.2023.028601

    Abstract A prototype cleanroom for hazardous testing and handling of satellites prior to launcher encapsulation, satisfying the ISO8 standard has been designed and analyzed in terms of performances. Unsteady Reynolds Averaged Navier-Stokes (URANS) models have been used to study the related flow field and particulate matter (PM) dispersion. The outcomes of the URANS models have been validated through comparison with equivalent large-eddy simulations. Special attention has been paid to the location and shape of the air intakes and their orientation in space, in order to balance the PM convection and diffusion inside the cleanroom. Forming a cyclone-type flow pattern inside the… More >

  • Open Access

    ARTICLE

    TRANSIENT FREE CONVECTION MHD FLOW PAST A VERTICAL PLATE WITH EXPONENTIALLY DECAYING WALL TEMPERATURE AND RADIATION

    Rudra Kanta Dekaa, Ashish Paulb,*, Nityajyoti Kalitac

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-5, 2015, DOI:10.5098/hmt.6.15

    Abstract A theoretical study of thermal radiation effects on unsteady MHD natural convection flow of an electrically conducting fluid past a vertical plate with variable temperature is considered. It is supposed that the temperature of the plate decays exponentially with time. Exact solutions to the nondimensionalised coupled linear partial differential equations representing the flow problem are obtained using Laplace transform technique. Effects of different physical parameters involved in the temperature and velocity profiles are investigated, shown graphically and discussed. Skin friction and Nusselt number are also derived and their variations with respect to the parameters are investigated. More >

  • Open Access

    ARTICLE

    MHD (SWCNTS + MWCNTS)/H2O-Based Williamson Hybrid Nanouids Flow Past Exponential Shrinking Sheet in Porous Medium

    Hamzeh Taha Alkasasbeh1,*, Muhammad Khairul Anuar Mohamed2

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 265-279, 2023, DOI:10.32604/fhmt.2023.041539

    Abstract The present study numerically investigates the flow and heat transfer of porous Williamson hybrid nanofluid on an exponentially shrinking sheet with magnetohydrodynamic (MHD) effects. The nonlinear partial differential equations which governed the model are first reduced to a set of ordinary differential equations by using the similarity transformation. Next, the BVP4C solver is applied to solve the equations by considering the pertinent fluid parameters such as the permeability parameter, the magnetic parameter, the Williamson parameter, the nanoparticle volume fractions and the wall mass transfer parameter. The single (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) nanoparticles are taken as the hybrid nanoparticles.… More >

  • Open Access

    ARTICLE

    UNSTEADY HYDROMAGNETIC HEAT AND MASS TRANSFER NATURAL CONVECTION FLOW PAST AN EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH HALL CURRENT AND ROTATION IN THE PRESENCE OF THERMAL AND MASS DIFFUSIONS

    J. K. Singha,*, N. Joshia , S. G. Beguma, C. T. Srinivasab

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-12, 2016, DOI:10.5098/hmt.7.24

    Abstract In the present analytical study, we have considered unsteady hydromagnetic heat and mass transfer natural convection flow of an electrically conducting, heat absorbing and chemically reacting fluid past an exponentially accelerated vertical plate in a uniform porous medium taking Hall current and rotation into account. The species concentration near the plate is considered to be varies linearly with time. Two particular cases for plate temperature are considered i.e. (i) plate temperature is uniform and (ii) plate temperature varies linearly with time and after some time it is maintained at uniform temperature. The coupled partial differential equations governing the fluid flow… More >

  • Open Access

    ARTICLE

    Reliability Analysis of HEE Parameters via Progressive Type-II Censoring with Applications

    Heba S. Mohammed1, Mazen Nassar2,3, Refah Alotaibi1, Ahmed Elshahhat4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2761-2793, 2023, DOI:10.32604/cmes.2023.028826

    Abstract A new extended exponential lifetime model called Harris extended-exponential (HEE) distribution for data modelling with increasing and decreasing hazard rate shapes has been considered. In the reliability context, researchers prefer to use censoring plans to collect data in order to achieve a compromise between total test time and/or test sample size. So, this study considers both maximum likelihood and Bayesian estimates of the Harris extended-exponential distribution parameters and some of its reliability indices using a progressive Type-II censoring strategy. Under the premise of independent gamma priors, the Bayesian estimation is created using the squared-error and general entropy loss functions. Due… More >

  • Open Access

    ARTICLE

    AN EFFECT OF CATTANEO CHRISTOV HEAT FLUX MODEL FOR EYRING POWELL FLUID OVER AN EXPONENTIALLY STRETCHING SHEET

    B. Ahmad*, Z. Iqbal

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-6, 2017, DOI:10.5098/hmt.8.22

    Abstract We examine the behavior of Cattaneo-Christov heat flux model for two-dimensional incompressible flow of Eyring Powell fluid passed over an exponentially stretching sheet. Mathematical formulation is performed by assuming boundary layer approximation. Cattaneo Christov heat flux model is applied to analyze the heat transport phenomenon. Thermal relaxation time is envisaged on the layer induced due to boundary. The governing Partial Differential equations are converted into Ordinary differential equations by the appropriate use of similarity transformation. Shooting approach is used to tackle the obtained boundary layer equations. The effects of obtained similarity parameters are plotted and discussed. Computation results reveal that… More >

  • Open Access

    ARTICLE

    FLOW OVER AN EXPONENTIALLY STRETCHING SHEET WITH HALL, THERMAL RADIATION AND CHEMICAL REACTION EFFECTS

    D. Srinivasacharya* , P. Jagadeeshwar

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.37

    Abstract Numerical solutions for the boundary layer flow, heat and mass transfer of a viscous incompressible fluid over an exponentially stretching sheet is developed. The effect of Hall current, chemical reaction and thermal radiation are taken into account. Through similarity transformations, the governing boundary layer equations are reduced to a set of coupled non-linear ordinary differential equations and then linearized using the successive linearization method. The resultant linear system is solved using the Chebyshev pseudo spectral method. The numerical results for velocity, temperature and concentration are shown graphically. The skin-frictions are calculated and variations with pertinent parameters are presented in tabular… More >

  • Open Access

    ARTICLE

    MHD SLIP FLOW AND HEAT TRANSFER OVER AN EXPONENTIALLY STRETCHING PERMEABLE SHEET EMBEDDED IN A POROUS MEDIUM WITH HEAT SOURCE

    P. R. Sharmaa , Sushila Choudharya,* , O. D. Makindeb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.18

    Abstract Steady two dimensional laminar magnetohydrodynamic (MHD) slip flow and heat transfer of a viscous incompressible and electrically conducting fluid past over a flat exponentially non-conducting stretching porous sheet embedded in a porous medium with non uniform permeability in the presence of non uniform heat source is investigated. The governing equations of velocity and temperature distributions are solved numerically and the effects of different physical parameters are shown through graphs. The rate of shear stress and the rate of heat transfer at the sheet are derived, discussed numerically and their numerical values for various values of physical parameters are presented through… More >

Displaying 1-10 on page 1 of 61. Per Page