Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    REVIEW

    Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration

    AAYUSHI RANDHAWA1,2, SAYAN DEB DUTTA1, KEYA GANGULY1, TEJAL V. PATIL1,2, RACHMI LUTHFIKASARI1, KI-TAEK LIM1,2,*

    BIOCELL, Vol.47, No.4, pp. 789-808, 2023, DOI:10.32604/biocell.2023.026217

    Abstract Tissues are made up of cells and the extracellular matrix (ECM) which surrounds them. These cells and tissues are actively adaptable to enduring significant stress that occurs in daily life. This astonishing mechanical stress develops due to the interaction between the live cells and the non-living ECM. Cells in the matrix microenvironment can sense the signals and forces produced and initiate a signaling cascade that plays a crucial role in the body’s normal functioning and influences various properties of the native cells, including growth, proliferation, and differentiation. However, the matrix’s characteristic features also impact the repair and regeneration of the… More >

  • Open Access

    VIEWPOINT

    The cellular microenvironment and cytoskeletal actin dynamics in liver fibrogenesis

    NOUR HIJAZI, DON C. ROCKEY*, ZENGDUN SHI*

    BIOCELL, Vol.46, No.9, pp. 2003-2007, 2022, DOI:10.32604/biocell.2022.020171

    Abstract Hepatic stellate cells (HSCs) are the primary effector cells in liver fibrosis. In the normal liver, HSCs serve as the primary vitamin A storage cells in the body and retain a “quiescent” phenotype. However, after liver injury, they transdifferentiate to an “activated” myofibroblast-like phenotype, which is associated with dramatic upregulation of smooth muscle specific actin and extracellular matrix proteins. The result is a fibrotic, stiff, and dysfunctional liver. Therefore, understanding the molecular mechanisms that govern HSC function is essential for the development of anti-fibrotic medications. The actin cytoskeleton has emerged as a key component of the fibrogenic response in wound… More >

  • Open Access

    VIEWPOINT

    Applications of scaffolds: Tools for enhancing the immunomodulation of mesenchymal stromal cells

    OK-HYEON KIM1,2,#, EUN RAN KIM3,#, JUN HYUNG PARK2, HYUN JUNG LEE1,2,*

    BIOCELL, Vol.46, No.6, pp. 1439-1443, 2022, DOI:10.32604/biocell.2022.018921

    Abstract Exogenously delivered mesenchymal stromal cells (MSCs) are therapeutically beneficial owing to their paracrine effect; they secrete various cytokines, nucleic acids, and proteins. Multiple bioengineering techniques can help MSC cultures to release secretomes by providing stem cell niche-like conditions (both structurally and functionally). Various scaffolds mimic the natural extracellular matrix (ECM) using both natural and synthetic polymers, providing favorable environments for MSC proliferation and differentiation. Depending on material properties, either topographically or elastically structured scaffolds can be fabricated. Three-dimensional scaffolds have tunable substrate rigidities and structures, aiding MSC cultivation. Decellularized ECM-derived hydrogels are similar to the natural ECM, thus improving the… More >

  • Open Access

    VIEWPOINT

    Stem cells in intervertebral disc regeneration–more talk than action?

    PETRA KRAUS1,*, ANKITA SAMANTA1, SINA LUFKIN2, THOMAS LUFKIN1

    BIOCELL, Vol.46, No.4, pp. 893-898, 2022, DOI:10.32604/biocell.2022.018432

    Abstract Pain and lifestyle changes are common consequences of intervertebral disc degeneration (IVDD) and affect a large part of the aging population. The stemness of cells is exploited in the field of regenerative medicine as key to treat degenerative diseases. Transplanted cells however often face delivery and survival challenges, especially in tissues with a naturally harsh microniche environment such as the intervertebral disc. Recent interest in the secretome of stem cells, especially cargo protected from microniche-related decay as frequently present in degenerating tissues, provides new means of rejuvenating ailing cells and tissues. Exosomes, a type of extracellular vesicles with purposeful cargo… More >

  • Open Access

    VIEWPOINT

    Mechanotransduction-The relationship between gravity, cells and tensile loading in extracellular matrix

    FREDERICK H. SILVER

    BIOCELL, Vol.46, No.2, pp. 297-299, 2022, DOI:10.32604/biocell.2022.017406

    Abstract Gravity plays a central role in vertebrate development and evolution. Mechanotransduction involves the tensile tethering of veins and arteries, connections between the epidermis and dermis in skin, tensile stress concentrations that occur at tissue interfaces, cell-cell interactions, cell-collagen fiber stress transfer in extracellular matrix and fluid shear flow. While attention in the past has been directed at understanding the myriad of biochemical players associated with mechanotransduction pathways, less attention has been focused on determining the tensile mechanical behavior of tissues in vivo. Fibroblasts sit on the surface of collagen fibers in living skin and exert a retractile force on the… More >

  • Open Access

    ARTICLE

    Improvement of transfection with reprogramming factors in urinederived cells

    OLIVIA A. ROBLES-RODRÍGUEZ1, MARÍA J. LOERA-ARIAS1,*, JOSÉ J. PÉREZ-TRUJILLO1, ARNULFO VILLANUEVA-OLIVO1, ERNESTO PICÓN-GALINDO1, LAURA VILLARREAL-MARTÍNEZ2, ADOLFO SOTO-DOMÍNGUEZ1, HUMBERTO RODRÍGUEZ-ROCHA1, ARACELY GARCÍA-GARCÍA1, ODILA SAUCEDO-CÁRDENAS1,3, ROBERTO MONTES DE OCA-LUNA1,*

    BIOCELL, Vol.44, No.3, pp. 401-409, 2020, DOI:10.32604/biocell.2020.010064

    Abstract Human-induced pluripotent stem cells (iPSCs) are an accessible source of adult-derived, patient-specific pluripotent stem cells for use in basic research, drug discovery, disease modeling, and stem cell therapy. Improving the accessibility of methods to obtain iPSCs regardless of the cell source can enhance their clinical application. Therefore, our purpose is to report a simple protocol to obtain iPS-like cells from urine-derived renal epithelial cells (RECs) using different extracellular matrices and transfection reagents. In this study, we began by culturing urine-derived cells from healthy donors to establish a primary culture of renal epithelial cells, followed by their characterization. Subsequently, we generated… More >

  • Open Access

    ARTICLE

    Interleukin-1β regulates metalloproteinase activity and leptin secretion in a cytotrophoblast model

    VANINA ANDREA FONTANA1, MELISA SANCHEZ1, ELISA CEBRAL2 AND JUAN CARLOS CALVO1,3*

    BIOCELL, Vol.34, No.1, pp. 37-44, 2010, DOI:10.32604/biocell.2010.34.037

    Abstract Implantation is one of the most regulated processes in human reproduction, by endocrine and immunological systems. Cytokines are involved in embryo-maternal communication and an impaired balance could result in pregnancy loss. Here we investigated the effect of interleukin 1-β on the activity of two important metalloproteinases (MMP-2 and MMP-9) that are involved in extracellular matrix remodeling as well as the secretion of leptin, one of the reproductive hormones actively regulating their activity and secretion. We found that IL-1β activates matrix metalloproteinase activity as well as increases leptin secretion. We propose that this interleukin, through the regulation of leptin, in turn… More >

  • Open Access

    ARTICLE

    Extracellular matrix of ostrich articular cartilage

    TATIANA CARLA TOMIOSSO, LAURECIR GOMES, BENEDICTO DE CAMPOS VIDAL, EDSON ROSA PIMENTEL

    BIOCELL, Vol.29, No.1, pp. 47-54, 2005, DOI:10.32604/biocell.2005.29.047

    Abstract The composition and organization of the extracellular matrix of ostrich articular cartilage was investigated, using samples from the proximal and distal surfaces of the tarsometatarsus. For morphological analysis, sections were stained with toluidine blue and analyzed by polarized light microscopy. For biochemical analysis, extracellular matrix components were extracted with 4 M guanidinium chloride, fractionated on DEAE-Sephacel and analyzed by SDS-PAGE. Glycosaminoglycans were analyzed by electrophoresis in agarose gels. Structural analysis showed that the fibrils were arranged in different directions, especially on the distal surface. The protein and glycosaminoglycan contents of this region were higher than in the other regions. SDS-PAGE… More >

  • Open Access

    ARTICLE

    Proteoglycans production by aortic vascular smooth muscle cells from hypertensive rats

    Norma Risler, Claudia Castro, Montserrat Cruzado, Susana González, Roberto Miatello

    BIOCELL, Vol.27, No.2, pp. 189-196, 2003, DOI:10.32604/biocell.2003.27.189

    Abstract Remodeling of large and small arteries contributes to the development and complications of hypertension. Artery structural changes in chronic sustained hypertension include vascular smooth muscle cells (VSMC) proliferation and extracellular matrix (ECM) modifications. Extracellular constituents such as proteoglycans (PGs), may modulate vascular stiffness and VSMC growth and differentiation. We examined the effect of growth factors on secreted and membrane-bound PGs synthesis by cultured aortic smooth muscle cells (SMC) from 12- to 14- week-old spontaneously hypertensive rats (SHR) and age-matched Wistar rats. After stimulation with platelet-derived growth factor (PDGF-BB), 10% fetal calf serum (FCS) or 0.1% FCS as control, PGs synthesis… More >

  • Open Access

    ABSTRACT

    Extracellular Matrix Elasticity Gives Integrin a Sweet Change via a p53/miRNA-532/atp2c1 Axis

    Yan Zu1,2, Qiang Li1, Chun Yang2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 106-106, 2019, DOI:10.32604/mcb.2019.07132

    Abstract Extracellular matrix (ECM) elasticity affects the function of a variety of cells. Integrins are transmembrane receptors that considered to be a sensor of cellular mechanical stimulation. The activity of integrins is strongly influenced by glycans through glycosylation events and the establishment of glycan-mediated interactions. Our study found that the level of β1 integrin N-linked glycosylation was significantly down-regulated on softer ECM. Further, sialic acid is a common monosaccharide modified at the end of the sugar chain during N-glycosylation. We subjected the enriched sialylated glycoproteins to gel-based proteomic identification by tandem mass spectrometry and found that the chondrocytes seeded on stiff… More >

Displaying 1-10 on page 1 of 15. Per Page