Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    Steel Surface Defect Detection via the Multiscale Edge Enhancement Method

    Yuanyuan Wang1,*, Yemeng Zhu1, Xiuchuan Chen1, Tongtong Yin1, Shiwei Su2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072404 - 12 January 2026

    Abstract To solve the false detection and missed detection problems caused by various types and sizes of defects in the detection of steel surface defects, similar defects and background features, and similarities between different defects, this paper proposes a lightweight detection model named multiscale edge and squeeze-and-excitation attention detection network (MSESE), which is built upon the You Only Look Once version 11 nano (YOLOv11n). To address the difficulty of locating defect edges, we first propose an edge enhancement module (EEM), apply it to the process of multiscale feature extraction, and then propose a multiscale edge enhancement… More >

  • Open Access

    ARTICLE

    GPR Image Enhancement and Object Detection-Based Identification for Roadbed Subsurface Defect

    Zhuangqiang Wen1, Min Zhang2, Zhekun Shou3,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071300 - 08 January 2026

    Abstract Roadbed disease detection is essential for maintaining road functionality. Ground penetrating radar (GPR) enables non-destructive detection without drilling. However, current identification often relies on manual inspection, which requires extensive experience, suffers from low efficiency, and is highly subjective. As the results are presented as radar images, image processing methods can be applied for fast and objective identification. Deep learning-based approaches now offer a robust solution for automated roadbed disease detection. This study proposes an enhanced Faster Region-based Convolutional Neural Networks (R-CNN) framework integrating ResNet-50 as the backbone and two-dimensional discrete Fourier spectrum transformation (2D-DFT) for… More >

  • Open Access

    ARTICLE

    Optimized Industrial Surface Defect Detection Based on Improved YOLOv11

    Hua-Qin Wu1,2, Hao Yan1,2, Hong Zhang1,2,*, Shun-Wu Xu1,2, Feng-Yu Gao1,2, Zhao-Wen Chen1,2

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070589 - 08 January 2026

    Abstract In industrial manufacturing, efficient surface defect detection is crucial for ensuring product quality and production safety. Traditional inspection methods are often slow, subjective, and prone to errors, while classical machine vision techniques struggle with complex backgrounds and small defects. To address these challenges, this study proposes an improved YOLOv11 model for detecting defects on hot-rolled steel strips using the NEU-DET dataset. Three key improvements are introduced in the proposed model. First, a lightweight Guided Attention Feature Module (GAFM) is incorporated to enhance multi-scale feature fusion, allowing the model to better capture and integrate semantic and… More >

  • Open Access

    ARTICLE

    Lightweight Small Defect Detection with YOLOv8 Using Cascaded Multi-Receptive Fields and Enhanced Detection Heads

    Shengran Zhao, Zhensong Li*, Xiaotan Wei, Yutong Wang, Kai Zhao

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-14, 2026, DOI:10.32604/cmc.2025.068138 - 10 November 2025

    Abstract In printed circuit board (PCB) manufacturing, surface defects can significantly affect product quality. To address the performance degradation, high false detection rates, and missed detections caused by complex backgrounds in current intelligent inspection algorithms, this paper proposes CG-YOLOv8, a lightweight and improved model based on YOLOv8n for PCB surface defect detection. The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy, thereby enhancing the capability of identifying diverse defects under complex conditions. Specifically, a cascaded multi-receptive field (CMRF) module is adopted to replace the SPPF module… More >

  • Open Access

    ARTICLE

    Emitter/Absorber Interface Design Strategies for Se Solar Cells

    Fan He1,2,3,*, Xu He4, Jie Wang1, Yu Hu5

    Chalcogenide Letters, Vol.22, No.11, pp. 939-949, 2025, DOI:10.15251/CL.2025.2211.939

    Abstract Selenium (Se) has garnered significant attention as a promising wide-bandgap material for photovoltaic applications. However, progress in enhancing the efficiency of Se solar cells remains limited. This study addresses this challenge by targeting the critical emitter/Se absorber interface for performance improvement. Through numerical simulations, we systematically investigate the impact of key interface properties—specifically, band alignment and defect characteristics—on device performance. Our results demonstrate that a slight positive conduction band offset (CBO) effectively strengthens absorber band bending and reduces hole concentration at the Se surface. Furthermore, minimizing interface defect density or incorporating donor-type defects significantly alleviates More >

  • Open Access

    ARTICLE

    RC2DNet: Real-Time Cable Defect Detection Network Based on Small Object Feature Extraction

    Zilu Liu1,#, Hongjin Zhu2,#,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 681-694, 2025, DOI:10.32604/cmc.2025.064191 - 29 August 2025

    Abstract Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems. However, existing methods struggle with small target sizes, complex backgrounds, low-quality image acquisition, and interference from contamination. To address these challenges, this paper proposes the Real-time Cable Defect Detection Network (RC2DNet), which achieves an optimal balance between detection accuracy and computational efficiency. Unlike conventional approaches, RC2DNet introduces a small object feature extraction module that enhances the semantic representation of small targets through feature pyramids, multi-level feature fusion, and an adaptive weighting mechanism. Additionally, a boundary feature enhancement module More >

  • Open Access

    ARTICLE

    An Improved Aluminum Surface Defect Detection Algorithm Based on YOLOv8n

    Hao Qiu, Shoudong Ni*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2677-2697, 2025, DOI:10.32604/cmc.2025.064629 - 03 July 2025

    Abstract In response to the missed and false detections that are easily caused by the large variety of and significant differences among aluminum surface defects, a detection algorithm based on an improved You Only Look Once (YOLO)v8n network is proposed. First, a C2f_DWR_DRB module is constructed by introducing a dilation-wise residual (DWR) module and a dilated reparameterization block (DRB) to replace the C2f module at the high level of the backbone network, enriching the gradient flow information and increasing the effective receptive field (ERF). Second, an efficient local attention (ELA) mechanism is fused with the high-level… More >

  • Open Access

    ARTICLE

    Steel Ball Defect Detection System Using Automatic Vertical Rotating Mechanism and Convolutional Neural Network

    Yi-Ze Wu, Yi-Cheng Huang*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 97-114, 2025, DOI:10.32604/cmc.2025.063441 - 26 March 2025

    Abstract Precision steel balls are critical components in precision bearings. Surface defects on the steel balls will significantly reduce their useful life and cause linear or rotational transmission errors. Human visual inspection of precision steel balls demands significant labor work. Besides, human inspection cannot maintain consistent quality assurance. To address these limitations and reduce inspection time, a convolutional neural network (CNN) based optical inspection system has been developed that automatically detects steel ball defects using a novel designated vertical mechanism. During image detection processing, two key challenges were addressed and resolved. They are the reflection caused… More >

  • Open Access

    ARTICLE

    MSCM-Net: Rail Surface Defect Detection Based on a Multi-Scale Cross-Modal Network

    Xin Wen*, Xiao Zheng, Yu He

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4371-4388, 2025, DOI:10.32604/cmc.2025.060661 - 06 March 2025

    Abstract Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation. However, existing detection methods often struggle with challenges such as complex defect morphology, texture similarity, and fuzzy edges, leading to poor accuracy and missed detections. In order to resolve these problems, we propose MSCM-Net (Multi-Scale Cross-Modal Network), a multiscale cross-modal framework focused on detecting rail surface defects. MSCM-Net introduces an attention mechanism to dynamically weight the fusion of RGB and depth maps, effectively capturing and enhancing features at different scales for each modality. To… More >

  • Open Access

    ARTICLE

    From Imperfection to Perfection: Advanced 3D Facial Reconstruction Using MICA Models and Self-Supervision Learning

    Thinh D. Le, Duong Q. Nguyen, Phuong D. Nguyen, H. Nguyen-Xuan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1459-1479, 2025, DOI:10.32604/cmes.2024.056753 - 27 January 2025

    Abstract Research on reconstructing imperfect faces is a challenging task. In this study, we explore a data-driven approach using a pre-trained MICA (MetrIC fAce) model combined with 3D printing to address this challenge. We propose a training strategy that utilizes the pre-trained MICA model and self-supervised learning techniques to improve accuracy and reduce the time needed for 3D facial structure reconstruction. Our results demonstrate high accuracy, evaluated by the geometric loss function and various statistical measures. To showcase the effectiveness of the approach, we used 3D printing to create a model that covers facial wounds. The More >

Displaying 1-10 on page 1 of 28. Per Page